
UNIVERSIDADE FEDERAL FLUMINENSE

ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO STRICTO SENSU EM ENGENHARIA DE

PRODUÇÃO

CURSO DE DOUTORADO EM ENGENHARIA DE PRODUÇÃO

CARLOS HENRIQUE TARJANO SANTOS

A GENERAL ALGORITHM FOR THE REAL-TIME EMULATION OF PITCHED MUSICAL

INSTRUMENTS AND THE SINGING VOICE

Dissertação apresentada ao Programa de

Pós-Graduação Stricto Sensu em Engenharia

de Produção da Universidade Federal

Fluminense como requisito parcial para

obtenção do Grau de Doutor em Engenharia

de Produção.

Professor Orientador:

Valdecy Pereira, D.Sc.

NITERÓI

2022

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

T176g Tarjano santos, Carlos Henrique
 A general algorithm for the real-time emulation of pitched
musical instruments and the singing voice / Carlos Henrique
Tarjano santos ; Valdecy Pereira, orientador. Niterói, 2022.
 181 f. : il.

 Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2022.

DOI: http://dx.doi.org/10.22409/TPP.2022.d.11839251743

 1. Rede neural artificial. 2. Inteligência artificial. 3.
Aprendizado de máquina. 4. Processamento de sinais. 5.
Produção intelectual. I. Pereira, Valdecy, orientador. II.
Universidade Federal Fluminense. Escola de Engenharia. III.
Título.

 CDD -

CARLOS HENRIQUE TARJANO SANTOS

A GENERAL ALGORITHM FOR THE REAL-TIME EMULATION OF PITCHED MUSICAL

INSTRUMENTS AND THE SINGING VOICE

Tese apresentada ao Curso de Doutorado em

Engenharia de Produção da Universidade

Federal Fluminense como requisito parcial

para obtenção do Grau de Doutor em

Engenharia de Produção.

Aprovada em ______ de ____________ de 2022

BANCA EXAMINADORA

Professor Orientador: Valdecy Pereira, D.Sc.

Universidade Federal Fluminense

Artur Alves Pessoa, D.Sc.

Universidade Federal Fluminense

Guilherme Lucio Abelha Mota, D.Sc.

Universidade do Estado do Rio de Janeiro

Miguel Arjona Ramírez, D.Sc.

Universidade de São Paulo

Vitor Acioly Barbosa, D.Sc.

Universidade Federal Fluminense

Dedico este trabalho à Maria e Nelson, meus progenitores, e ao meu tio-

avô e irmão, Antonio. Que um dia eu venha a ser inteligente como eles

achavam que eu fosse. Também à Samara: obrigado por caminhar

comigo, já há tanto tempo, o caminho perigoso que é a vida. E à minha

família: minha avó Helena, minha madrinha Maria e minha prima

Larissa.

AGRADECIMENTOS

Agradeço à Universidade Federal do Rio de Janeiro, onde trabalho, e especialmente a seu corpo técnico-

administrativo, por ter possibilitado dedicar-me aos meus arroubos intelectuais.

Ao professor Valdecy Pereira, meu orientador, por ter proporcionado o ambiente ideal para o desenvolvimento de

minha pesquisa, tanto durante o mestrado quanto agora, no doutorado.

Ao professor Guilherme Lucio Abelha Mota, pela disciplina de Visão Computacional ministrada em 2019 na

Universidade Estadual do Rio de Janeiro, uma das disciplinas mais bem estruturadas que tive o prazer de

cursar, e que me proporcionou valiosa inspiração.

Ao professor Eduardo Miranda, por ter me acolhido em Plymouth, onde pude expandir meus horizontes sobre as

possibilidades, teóricas e práticas, da minha área de pesquisa.

Ao doutor Maurício do Vale Madeira da Costa e ao professor Miguel Arjona Ramírez, pela leitura atenta da

tese, e apontamentos importantes sobre termos e conceitos da área de DSP.

Ao professor Artur Alves Pessoa, pelas disciplinas estimulantes ministradas durante o Mestrado e Doutorado, e

por ter me inspirado a investigar, além de outras coisas, a linguagem C++.

Ao professor Vitor Acioly Barbosa, amigo de longa data, por ter aceito o desafio de avaliar um trabalho fora de

sua zona de conforto, em um momento em que estava bastante atarefado, e pelas valiosas contribuições

oferecidas.

Problemas há, Liberális excelente, cuja pesquisa vale só pelo intelectual

exercício, e que ficam sempre fora da vida; outros investigam-se com

prazer e com proveito se resolvem.

Guimarães Rosa

Resumo

Instrumentos musicais digitais baseados em amostras representam o atual estado

da arte da emulação de instrumentos musicais em tempo real. Embora os melhores

instrumentos digitais baseados em amostras apresentem boa qualidade de som, eles

apresentam várias desvantagens, como a falta de flexibilidade e as enormes biblio-

tecas de sons pré-gravados que demandam grandes espaços para armazenamento de

arquivos digitais, por exemplo. Nos últimos anos, as abordagens baseadas em inteli-

gência artificial vêm ganhando popularidade. Embora a qualidade e a eficiência dos

modelos atuais estejam melhorando constantemente, eles tendem a consumir muitos

recursos computacionais e atualmente não são capazes de competir, em termos de

qualidade sonora, com instrumentos digitais baseados em amostras. No cerne deste

problema está a falta de uma representação apropriada para sinais discretos com

alto grau de periodicidade, formulada para aproveitar os resultados que as redes

neurais estão demonstrando em áreas como processamento de linguagem natural e

visão computacional, onde constituem o estado da arte. Este trabalho apresenta,

portanto, tal representação e, a partir dela, desenvolve um conjunto de instrumen-

tos musicais digitais capazes de emular instrumentos reais, além da voz cantada, em

tempo real, com requisitos modestos de armazenamento e poder de processamento.

Para tanto, é realizado um levantamento da literatura relacionada, especialmente no

que diz respeito à área de processamento digital de sinais, e preenche as lacunas que

impedem o desenvolvimento de tal representação. Especificamente, são introduzi-

dos novos algoritmos de detecção de envelopes e de segmentação de sinais discretos,

desenhado para identificar os pseudo ciclos individuais de sinais semi periódicos.

Esses avanços teóricos são empregados na implementação de um framework para

a emulação de instrumentos musicais em geral, onde os instrumentos digitais são

treinados usando amostras pré-gravadas de instrumentos reais. A qualidade das

amostras disponíveis gratuitamente para treinar o algoritmo é uma das limitações

do presente trabalho. O trabalho também exemplifica como algoritmos baseados

em redes neurais podem ser melhor integrados a áreas tradicionais relacionadas à

síntese sonora, e como podem motivar avanços práticos e teóricos nessas áreas.

Palavras-chave: Síntese sonora em tempo real, processamento digital de sinais,

redes neurais, representação discreta de sinais

Abstract

Sample-based digital musical instruments currently represent the state of the

art in real-world instrument emulation. While the best sample-based digital instru-

ments present good sound quality, they have several drawbacks, such as the lack of

flexibility, and the huge libraries and storage requirements involved, to name a few.

In the last few years, artificial intelligence-based approaches are gaining popularity.

While the quality and efficiency of the most recent such models are constantly im-

proving, they tend to be resource-intensive, and are not currently able to compete,

quality-wise, with sample-based real-time instruments. At the heart of this prob-

lem lies the lack of an appropriate representation for quasi-periodic discrete signals,

formulated to take advantage of the capabilities neural networks are demonstrating

in areas such as natural language processing and computer vision, where they con-

stitute the state of the art. This work introduces, therefore, such a representation,

and develops a set of digital musical instruments capable of emulating real-world

instruments and the singing voice in real-time, with modest storage and processing

requirements. To do so, this work surveys the related literature, especially concern-

ing digital signal processing, and fills the gaps that hinder the development of such

a representation. Specifically, a novel envelope detection algorithm and a discrete

signal segmentation algorithm, tailored to identify the individual pseudo cycles of

quasi-periodic signals, are introduced. The theoretical advancements are employed

in the implementation of a general algorithm for the emulation of real-world instru-

ments, that are trained using samples from real-world instruments and the singing

voice. The quality of the freely available samples used to train the algorithm is

one of the limitations of the present work. The work also exemplifies how neural

networks-based algorithms can be more integrated with traditional areas related to

sound synthesis, and how they can motivate practical and theoretical advancements

in those areas.

Keywords: Real-time sound synthesis, Digital Signal Processing, Neural Net-

works, Discrete Signal Representation

LIST OF FIGURES

1 Envelope of a pure sinusoid with a local frequency of 40 cycles per its N

samples, modulated by a polynomial of degree 3, obtained by the Hilbert

transform approach. In the first half of the samples, the sinusoid is free of

noise. In the second half, Gaussian noise was added to the signal. 38

2 Comparison of the envelopes obtained by the Hilbert transform, with and

without further filtering, for a section of the representation of an alto singer

sustaining a steady note. The filtered envelope, while smooth, significantly

undershoots the original signal. 39

3 A set of points and its corresponding convex hull. 41

4 A set of points and its corresponding alpha shape. 42

5 Comparison between the convex hull and an alpha shape of a set of points. 43

6 A discrete signal interpreted as a set of points in the Cartesian plane, two

alpha shapes, and the convex hull defined by it. 44

7 Discrete representation of the sound of a bassoon, segmented into its

pseudo cycles. 47

8 An infinitesimal segment of a long string with constant density. 56

9 A complex signal, in red, decomposed into its sinusoidal components. The

amplitude of each component can be seen in the blue line. 61

10 Example of a discrete wave w arising from the elementwise multiplication

of an envelope e and a carrier c, both previously known. The local extrema

of w are highlighted with a circle. 65

11 Example of a discrete wave w divided into pulses, of which the extrema

are highlighted with a circle. P is the set of the points Pi = (ni, |wni
|)

representing the absolute value of those extrema. 67

12 The set P of points, in both the original (top) and Cartesian (bottom)

coordinate systems, shown in scale. Correspondence is maintained between

both horizontal axes, in order to simplify the process of retrieving the

algorithm results. 69

13 The set P of points and the set V of vectors between two adjacent points

of P, in the Cartesian coordinate system. 71

14 The unit vector tangent to the circle changes from the horizontal direction

in û0 to an inclination of θi in û1, θi being the angle that vector vi makes

with the horizontal direction. 72

15 Superior and inferior frontiers of six discrete signals, extracted by the pro-

posed algorithm. For each wave, the region highlighted in black is shown

in detail. The horizontal axis of each subplot represents the sample index

n, while the vertical axis represents the normalized amplitude. 79

16 Fourier power spectrum for the wave and carrier shown in Figure 10. . . . 80

17 Fourier power spectrum for wave and carrier of the sound of a guitar bend

shown in Figure 45. 81

18 Part of the digital wave illustrated in Figure 44, with vertical lines at the

indices of the samples that belong to the positive frontier. 82

19 Waveform of each pseudo cycle of the wave illustrated in Figure 44, inter-

polated to the same length and superposed. The average in its original

position, and shifted, is also shown. 83

20 Signal and predominant phases for part of the soprano A signal shown in

Table 6. Where the phase reaches π outside the grayed-out area represent-

ing the jumps, a boundary is defined. 84

21 Waveform of the original signal and the 4 compressed signals. Harmonic

Compression (HC) is the compression schema presented in Section 3.3.2.

The traditional codecs are operating at extreme compression settings fully

described in Section 5.2.2.1. The cymbal, being predominantly inharmonic,

is used to illustrate that the algorithm exhibits reasonable performance

even in worst-case scenario situations. 87

22 Positive and negative frontiers of the original soprano A signal, obtained

using the segmentation presented in Algorithm 2, compared to the envelope

obtained using the Hilbert transform. 88

23 The original Soprano A signal is shown, segmented into its pseudo cycles.

In the left subplot, the effect of the temporal envelope and the variation

in pseudo cycle lengths can be seen, in the form of a white, approximately

plane area of the surface on the left-hand side of the graph. This is so

because the waveforms of the pseudo cycles were zero-padded. Those ef-

fects were normalized in the plot on the right, to highlight the similarity

between adjacent waveforms. 89

24 The various waveforms that compose the original soprano A signal are

shown superimposed, after being scaled to the same length, and having

their amplitudes normalized. The average of those individual waveforms

is shown in red. 91

25 The theoretical compressed size as a function of T , the average period of

the original signal. 92

26 Workflow for the emulation of an instrument, starting with the process

of acquiring the samples and culminating in the generation of a trained

neural network to serve as the plugin’s engine. 97

27 Selected pseudo cycles from various singing voices and a cello, represented

in the time and frequency domains. The number of the pseudo cycle is

presented after the name of the instrument, after a comma. 104

28 Selected pseudo cycles from various singing voices and a cello, and their

reconstructed versions from partial frequency domain representations. . . . 105

29 Activation function used in all layers of the network. 111

30 Comparison of the performance of the average deterministic error of the

optimizers. The errors from the RMSprop and Rprop optimizers can’t be

seen in the figure, as they are above the shown region. 113

31 Comparison of the performance of the average random error of the Adam,

AdamW and RAdam optimizers. The behavior of the other optimizers can

be seen in the interactive version of the figure. 114

32 Comparison of the performance of optimizers, using the average determin-

istic error metric, for the Steinway model D sample library. Lower values

are better. 115

33 Comparison of the performance of optimizers, using the loss metric, for the

Steinway model D sample library. Lower values are better. 115

34 Comparison of the performance of optimizers, using the average random

error metric, for the Steinway model D sample library. Lower values are

better. 116

35 Comparison of the performance of optimizers, using the average determin-

istic and random error metrics, for the Steinway model D sample library. . 119

36 Comparison of the performance of optimizers, using the average determin-

istic and random error metrics, for the Violin sample library. 120

37 Comparison of the performance of optimizers, using the average determin-

istic and random error metrics, for the Voice sample library. 121

38 Comparison of the performance of three loss functions, using the aver-

age deterministic and random error metrics, for the Voice sample library.

Lower is better. 122

39 Minimum deterministic error obtained by training a network, with different

numbers of layers and neurons, over the SteinwayB library. 123

40 Minimum deterministic error obtained by training a network, with different

numbers of layers and neurons, over the Violin library. 124

41 Minimum deterministic error obtained by training a network, with different

numbers of layers and neurons, over the Voice library. 125

42 Minimum deterministic error for various numbers of amplitude outputs,

for the SteinwayD sample library. 126

43 Signal, envelope, and carrier of a male voice uttering the word “amazing”. . 128

44 Signal, envelope, and carrier for an alto singer sustaining a steady note. . . 128

45 Signal, envelope, and carrier for a bend performed on an electric guitar. . . 129

46 Envelope as the boundary of the region filled by a family of curves, for a

family of sinusoids with the same frequency and amplitude, modulated by

a polynomial. 130

47 Part of the reference envelope obtained by shifting the original signal hor-

izontally, for the sound of a tom drum. 131

48 Comparison of envelope detection algorithms for a simple sinusoid. The

envelope for the Hilbert transform and for the present work are coincident

in the image. 132

49 Comparison of envelope detection algorithms for the sound of the key 33

of a grand piano . 133

50 Comparison of envelope detection algorithms for the vocalization of a so-

prano singer . 133

51 The left plot shows the total size of the 16 compressed samples (lower

values are better). The right plot shows the average compression rate and

the 95% confidence interval around the average (higher values are better). 141

52 Average encoding (left) and decoding (right) times for the 4 codecs, within

a 95% confidence interval. Lower values are better. 142

53 Average Mean Squared Error in the time domain (left) and Average Abso-

lute Error in the frequency (right) for the 4 codecs, within a 95% confidence

interval. Lower values are better. 143

54 Average Mean Opinion Score — Listening Quality Objective (MOS-LQO)

scores for the speech (left) and audio (right) modes, for the 4 codecs, within

a 95% confidence interval. Higher values are better. 144

55 Histogram of the mean squared error (MSE) errors of the trained networks,

as well as their respective 50th percentiles. 148

LIST OF TABLES

1 Correlation between the three metrics used throughout this work, for differ-

ent neural network architectures. The labels at the top row are as follows:

l - layers; n - neurons; opt - optimizer. The remaining labels use the

following abbreviation: L - average loss, in the frequency domain; D - av-

erage error of 200 equally spaced outputs, transformed to the time domain;

R - average error of 200 randomly sampled outputs, transformed to the

time domain. The r and p indicators stand for the Pearson’s correlation

coefficient and the two-tailed p-value, respectively. 117

2 Information about the sample libraries used throughout this work. Storage

sizes refer to the arrays stored on disk using the NumPy binary format (.npy).119

3 Name and minimum deterministic error of the final networks used as in-

strument engines. 125

4 average absolute error (AAE)s of each algorithm in relation to the reference

envelope. All signals were previously normalized. 134

5 Processing time of the algorithms, in seconds. 135

6 Details of the original signals used to test the algorithm. The path is in

relation to the root of the repository prepared for the algorithm (Tarjano,

2021). 139

7 Name and statistics of the totality of errors of the final networks used as

instrument engines. After the name of each instrument, the subsequent

columns show the average, maximum value, minimum value, and variance

of the MSEs. The following column shows the calculation time, in seconds,

and the last column shows the number of pseudo cycles. 147

8 Comparison of the most prominent digital instruments that emulate a

grand piano. Adapted from Sluis (2022). 149

LIST OF ACRONYMS

AAC Advanced Audio Coding. 128, 130, 132, 137

AAE average absolute error. 113, 114, 126, 134

AAX Avid Audio eXtension. 92

AI artificial intelligence. 14, 18, 19, 23, 24, 40–42, 142, 143

AIFF Audio Interchange File Format. 110

AM amplitude modulation. 55, 58

AU Audio Units. 92

CNN Convolutional Neural Network. 37, 128, 142

CSS Concatenative Sound Synthesis. 37

DAW digital audio workstation. 23, 91, 92, 94

DFT discrete Fourier transform. 28, 39, 51, 52, 69, 76, 85, 86, 122

DSP digital signal processing. 14–20, 23, 25, 29, 31, 32, 36, 46, 142, 144–146

DTFT discrete-time Fourier transform. 51

EDVAC Electronic Discrete Variable Automatic Computer. 27

ENIAC Electronic Numeric Integrator and Calculator. 25, 27, 40

FFT fast Fourier transform. 28, 39, 90, 102

FM frequency modulation. 56, 58

GAN Generative Adversarial Network. 42

GUI Graphical user interface. 92, 94, 98

HC Harmonic Compression. 79, 129–132, 135, 137

HILN Harmonic and Individual Lines plus Noise. 131

HVXC Harmonic Vector Excitation Coding. 131

IAS Institute for Advanced Study machine. 25

ICMAI 02 2nd International Conference on Music and Artificial Intelligence. 41

IDFT inverse discrete Fourier transform. 52, 86

IETF Internet Engineering Task Force. 130

ITU-R International Telecommunication Union’s Radiocommunication. 135

kbit/s kilobits per second. 130, 132

MIDI Musical Instrument Digital Interface. 19, 43, 44, 91–94, 99, 102, 141

MIS University of Iowa Musical Instrument Samples. 110, 130

MMA MIDI Manufacturers Association. 44

MOS-LQO Mean Opinion Score — Listening Quality Objective. 136

MP3 MPEG-2 Audio Layer III. 110, 128, 130–133, 137

MSE mean squared error. 112–114, 134, 138–140

MUSHRA Multiple Stimuli with Hidden Reference and Anchor. 135

ONNX Open Neural Network Exchange. 93

PEAQ Perceptual Evaluation of Audio Quality. 136

PESQ Perceptual Evaluation of Speech Quality. 135

POLQA Perceptual Objective Listening Quality Assessment. 135, 136

PSOLA pitch-synchronous overlap-add. 38

PyPI Python Package Index. 55, 70

RNN Recurrent Neural Network. 37, 41, 101

RTAS Real-Time AudioSuite. 92

SDFT sliding discrete Fourier transform. 85

SDK Software development kit. 92

SGD Stochastic Gradient Descent. 105

SMS Spectral Modeling Synthesis. 40

STC Sinusoidal Transform Coding. 40

ViSQOL Virtual Speech Quality Objective Listener. 136

VoIP Voice over Internet Protocol. 136

VST virtual studio technology. 23, 92

WAV Waveform Audio File. 90, 110

LIST OF ALGORITHMS

1 Retrieve Envelope . 75

2 Segment Signal . 86

CONTENTS

1 INTRODUCTION. 22

1.1 GENERAL OBJECTIVE . 24

1.2 SPECIFIC OBJECTIVES . 25

1.2.1 Formulation of a neural-networks-friendly representation. 25

1.2.2 Formulation of an accurate envelope detection algorithm. 25

1.2.3 Formulation of a signal segmentation algorithm to divide a signal into

its pseudo cycles . 25

1.3 LIMITATIONS . 26

1.4 STRUCTURE OF THIS WORK . 26

2 BIBLIOGRAPHIC REVIEW . 29

2.1 MUSICAL INSTRUMENTS AND DIGITAL COMPUTERS 32

2.2 ENVELOPE DETECTION . 37

2.2.1 The shape of a set of points in two dimensions 40

2.3 SIGNAL SEGMENTATION. 44

2.4 ARTIFICIAL INTELLIGENCE AND SOUND SYNTHESIS 48

2.5 THE MIDI SPECIFICATION. 51

3 PROPOSED TECHNIQUES . 54

3.1 WAVES . 54

3.2 RELATION BETWEEN CONTINUOUS AND DISCRETE WAVES 62

3.3 A GEOMETRIC APPROACH TO ENVELOPE ESTIMATION 63

3.3.1 Formalizing the problem of envelope detection 63

3.3.2 Simplified representation of a signal for envelope detection 66

3.3.3 Mapping to the Cartesian coordinate system 67

3.3.4 Discrete curvature estimation . 69

3.3.4.1 The Equivalent Circle Approach to discrete curvature estimation 71

3.3.5 Identifying the envelope . 73

3.3.6 Theoretical guarantees . 76

3.3.7 Extensions . 78

3.3.7.1 Superior and inferior envelopes . 78

3.3.7.2 Simplified spectral representation . 79

3.3.7.3 Approximated location of pseudo cycles . 81

3.4 SEGMENTING QUASI-PERIODIC SIGNALS INTO PSEUDO CYCLES 83

3.4.0.1 Deriving an envelope from the results of the segmentation algorithm 85

3.4.1 Representing a signal as an evolving waveform 88

3.4.2 Theoretical analysis of the segmentation algorithm 92

4 THE GENERAL ALGORITHM . 96

4.1 THE ECOSYSTEM . 99

4.2 OMNES SONOS: A REAL-TIME AUDIO PLUGIN APPLICATION 102

4.3 THE NEURAL NETWORKS . 108

4.3.1 Optimizer . 112

4.3.2 Loss function . 120

4.3.3 Number of parameters . 122

4.4 THE TRAINED INSTRUMENTS . 124

5 RESULTS . 127

5.1 QUALITY OF THE ENVELOPE . 127

5.1.1 Reference envelope . 129

5.1.2 Comparison with traditional algorithms . 131

5.2 QUALITY OF THE SEGMENTATION . 135

5.2.1 Application to Lossy Audio Compression . 136

5.2.2 Comparison With Traditional Lossy Codecs 137

5.2.2.1 Compression. 139

5.2.2.2 Timing . 141

5.2.2.3 Quality. 142

5.3 QUALITY OF THE PLUGIN . 145

5.3.1 Analysis of the errors of the networks . 146

5.3.2 Comparison with available piano plugins . 148

6 DISCUSSION. 150

6.1 CONCLUSION . 152

22

1 INTRODUCTION

The technological advances that took place in the XX century — phonography,

electrification, and, more recently, digitalization — altered music and musical instru-

ments profoundly (Bovermann et al., 2017). Not only the physical limitations of classical

instruments were overcome by the introduction of electric or digital counterparts, but a

landscape of new instruments and sounds came to be.

New technologies introduced in society in general often have an impact on the

evolution of musical instruments, as luthiers and musicians incorporate the new tech-

nologies and knowledge in their craft. Following this trend, it is not surprising that the

contemporary general musical landscape, including recording, production, and distribu-

tion, is largely digital, reflecting the omnipresence of digital technology in modern society

(Tahiroğlu et al., 2021).

Following this trend, the recent popularity surge of neural networks naturally in-

spired a myriad of music-related applications, in areas such as sound synthesis, music

classification, and algorithmic composition, to name a few.

A casual observer of the recent advancements in neural networks applied to audio

processing would be led to believe that a strong synergy exists between both areas. Despite

a profusion of audio-related works, the techniques employed suggested a disconnection

with established digital signal processing (DSP) practices. While this trend in itself is not

necessarily a problem, further analysis suggests there is room for improvement, mainly by

the introduction of a better, more compact, neural-networks-friendly signal representation.

The lack of such an appropriate representation partly explains why, despite con-

siderable advances in related areas such as computer vision, the field of machine learning

is lagging in relation to sound synthesis and other audio-related tasks.

The main objective of this work is, then, to fill this gap at the intersection between

the DSP and artificial intelligence (AI) theories, where a lack of an appropriate description

of quasi-periodic discrete signals hinders the efficacy and efficiency of some applications,

by proposing a novel, compact signal representation, and illustrates its effectiveness with

an implementation of a digital instrument capable of emulating virtually any real-world

pitched instrument, and the singing voice.

Ambitious as it may seem, it is also a tacit goal of this dissertation to motivate

a change of approach in domains that, despite their modest intersections, share more

attributes than is apparent at a superficial glance: both machine learning and digital

23

musical acoustics are areas that, despite their current relevance, are relatively new when

compared to more established fields such as statistics, having their origin at around the

1950s, and a scrutiny of both promptly reveals the difficulties that arise from this state

of affairs. A lack of their own terminology, with frequent borrows from other, more

established areas, can be readily cited, as the pronounced prominence of few individual

contributions.

Those shortcomings have, however, a bright side to them, in that they still expose

those areas to reinterpretation, rendering them somewhat open to the influence of outside

ideas.

The framework introduced in this work helps to illustrate the possibilities of this

synergetic approach, exemplifying how such integration can be done, via the development

of a new sound representation designed specifically to be used by neural networks in

real-time sound synthesis tasks.

The embryo of the methodology underlying the present work was the realization,

still during the development of my master’s degree thesis (Tarjano, 2018), that even a

heavily simplified description of characteristics of digital signals had the potential to be

the basis for an elegant approach to neural networks-based sound synthesis.

To contextualize, in that work I was able to generate realistic, albeit in a limited

way, acoustic instrument sounds using neural networks and a very crude model of the

envelope of the underlying signals, one that only considered exponential decay. This led

to severe limitations on the nature of the instruments that could be faithfully emulated,

restricting its usability to those instruments exhibiting a prominent percussive nature in

their modes of excitation. This included relevant instruments, such as pianos, acoustic

stringed instruments, and drums, but excluded other important categories, such as the

singing voice, wind instruments, and electric stringed instruments in general.

Despite those limitations, the work established the potential for improvement in

neural-networks-based sound synthesis, as long as a fitting representation of the underlying

signals became available, besides providing the experience of not only what was achievable

in the following four years of Ph.D. work but, perhaps more importantly, how much

experimentation and exploration could be done without compromising the established

deadline.

This experience was crucial in the formulation of a research project that allowed

focusing on two areas that were not adequately addressed in the DSP literature, and

exploring unorthodox approaches to solve them.

24

The envelope detection problem was addressed first, as reported in Tarjano et al.

(2022b). This paper forms the basis of Sections 3.3 and 5.1, and sets the general tone

of this work: a pragmatic investigation, with a clear objective, that nevertheless allows

itself to wander into ancillary topics, whenever those diversions have the potential to

prove themselves relevant to future advancements in the area of DSP in general. This

approach is reflected in the presence of unorthodox themes, such as discrete curvature

estimation, and the sketch of a mathematically sound definition of an envelope, with

some accompanying proofs.

The usefulness of the envelope detection algorithm introduced in the article moti-

vated the thorough investigation of a novel segmentation algorithm as a means of address-

ing the second gap in the literature. The results of this investigation were first presented

in Tarjano et al. (2022a), and can be seen, in the context of the present work, in Sections

3.3.2 and 3.4.

The main idea behind the algorithm is to segment a quasi-periodic signal into its

smallest meaningful parts, dubbed pseudo cycles. Keeping the same exploratory ethos, a

preliminary investigation of the use of the proposed theory in lossy sound compression is

also presented, for example, in Section 5.2.1.

In order to maintain its general coherence, the research had, from the very begin-

ning, a very clear goal of designing a general approach for the emulation of real-world

acoustic musical instruments based on a compact but complete digital signal representa-

tion using those algorithms: compact in the sense that most redundancy is avoided in the

proposed representation and complete since it must be possible to reconstruct the original

signal from this representation.

1.1 GENERAL OBJECTIVE

This work has as its primary objective the development and implementation of

a neural network-based real-time sound synthesis plugin, general enough to enable the

realistic emulation of virtually any pitched instrument. After surveying the available

relevant literature, this goal can be unfolded in the hierarchical steps described in the

next section.

25

1.2 SPECIFIC OBJECTIVES

1.2.1 Formulation of a neural-networks-friendly representation

A neural-networks-friendly representation can be described as one that not only

encodes, as succinctly as possible, all the information necessary to reconstruct a signal,

but one that must be also efficiently learned by a neural network. Developing such a

representation is the most general of the specific objectives of this work. Upon surveying

the relevant DSP literature, it becomes clear that the existing alternative representations

of discrete signals are tailored to specific applications, most of them with classification

purposes. Hence, those representations tend to favor simplicity, ignoring important infor-

mation essential to the reconstruction of the original signal.

The lack of tools — especially to envelope detection and signal segmentation —

for a deeper understanding of the core characteristics of discrete signals contributes to

the current situation and must be dealt with before one is able to formulate such a

representation. The following specific objectives, therefore, consist in filling those gaps.

1.2.2 Formulation of an accurate envelope detection algorithm

Available envelope detection algorithms are not accurate enough to enable a sep-

arate understanding of the fine structure of a signal, particularly its evolution, and an

analysis of the evolution of the envelope itself. This hinders a complete description of the

signal, especially for sound reconstruction purposes, since this disentanglement is essential

to pinpoint causality relations between loudness and other articulations from the timbre

of instruments.

1.2.3 Formulation of a signal segmentation algorithm to divide a signal into

its pseudo cycles

Discrete signals are commonly represented as a series of numbers representing

the instantaneous intensity of the signal at regular time intervals. For digital signals in

general, which often exhibit some degree of periodicity, this direct representation, while

convenient, can be highly redundant. This problem becomes more pronounced in the case

of discrete signals representing sound, where an elevated number of individual samples is

needed: one second of audio, in CD quality, is represented by 44100 individual samples

for each channel of a stereo format, for a total of 88200 individual samples. Representing

this discrete signal in the frequency domain would involve 44100 complex numbers, whose

26

real and imaginary parts would be computationally equivalent to the 88200 numbers in

the original, time domain representation.

The high dimensionality involved in both representations renders them unsuitable,

efficiency-wise, for machine learning-based applications. For quasi-periodic signals, the

intrinsic relations between neighboring samples are not emphasized by either of those

representations, and identifying and taking advantage of them becomes, thus, the respon-

sibility of algorithms that use one of those representations. A more high-level represen-

tation, encoding those relations organically, would alleviate the conceptual complexity of

further processing algorithms.

1.3 LIMITATIONS

Given the breadth of the scope of the present work, one of its limitations has

to do with the depth with which each area could be presented. This work adopts a

multidisciplinary approach to solve the problem of neural networks-based real-time sound

synthesis and demands familiarity with a wide gamut of fields that range from traditional

DSP to contemporary AI. Solutions to some of the problems described in previous sections

also take inspiration from related areas, such as computational geometry. All those areas

mentioned have researchers and practitioners that devoted their whole careers to those

individual fields and, naturally, the time constraints prevented an investigation as deep

as the author would like.

A more pragmatic limitation was found when searching for quality, freely available

sound libraries to train the final Omnes Sonos instruments. The libraries found, espe-

cially representing the singing voice, do not provide the ideal examples of articulations

and are generally poorly documented, being generally the effort of individuals without

institutional support. Besides, the quality of the recordings is often lacking, owing to the

expensive infrastructure needed to record, in isolation, a great number of samples.

1.4 STRUCTURE OF THIS WORK

Given the wide scope of this work, Chapter 2 consists of a bibliographic review,

aiming at familiarizing the reader with the topics that underline the work; the topics are

presented with varying detail, depending on how unorthodox the topic is with respect to

the mainstream DSP field.

Under this chapter, Section 2.1 presents a brief timeline of digital computers, from

mainframes to current desktops, and how they impacted musical instruments, especially

27

with the advent and popularization of digital musical instruments.

In the following section , Section 2.2, dedicated to an overview of envelope detection

techniques, a brief historical account, and the state of the art of the area are presented.

Since they will be useful in Chapter 3, when a geometric algorithm for envelope extraction

is introduced, topics such as how one defines the shape of a set of points, convex hulls,

and others of geometric nature are introduced in more detail in subsection 2.2.1.

The segmentation section, Section 2.3, on the other hand, is more succinct, reflect-

ing both the relatively lower volume of work concerning the subject found in the literature

and its more pragmatic nature.

The chapter advances with Section 2.4 presenting an account of the intersection

between the areas of AI and sound, helping to pinpoint the context in which this work

was developed.

The bibliographic review chapter ends with a brief history of the MIDI specifica-

tion, given its importance as a high-level music notation specification, and its centrality

to the work here presented.

The first two sections of Chapter 3 are concerned with waves: entities central to

this work, but that are seldom objectively defined in the literature.

In Section 3.1, about waves in general, instead of trying to propose a general

definition for a wave, an endeavor that many more capable minds shied away from, this

work aimed at providing an intuitive understanding of this entity algebraically grounded

by the derivation of the wave equation introduced by d’Alembert as the solution for the

problem of the vibrating string (Oliveira, 2020). This section also provides, intertwined

with the development of the theory relevant to this work, a historical background of the

theme.

The second section of this chapter — Section 3.2 — is more pragmatic in na-

ture, and relates the conceptual continuous wave with its discrete counterpart, serving to

introduce the nomenclature used throughout this dissertation.

The next two sections start the development of the main objective of this work

by filling the relevant gaps in the DSP theory, to subsequently introduce a novel repre-

sentation for pseudo periodic time series, of which sound representation is our primary

interest.

Those two sections — Section 3.3 and Section 3.4 — build upon sections 2.2 and

2.3 of the bibliographic review, where envelope detection and segmentation algorithms,

respectively, are commented: novel algorithms for each of those tasks are presented;

28

despite being developed as tools to enable the simplified representation envisaged in this

work, those algorithms were chosen to be presented in this chapter given their generality.

Building upon those algorithms, subsection 3.4.1 presents the digital signal repre-

sentation. Although much of the theory is drawn from conventional areas related to digital

signal processing and image processing, among others, the representation was formulated

from the beginning having in mind the strengths and limitations of neural networks:

by representing the pseudo cycles in the frequency domain, redundancy in the represen-

tation is minimized, and the temporal dependency between entries of the same output

eliminated, allowing the network to exclusively focus on learning the mapping between

different inputs and outputs.

This representation and the underlying theory, initially described in general terms,

are then applied in the implementation of a real-time audio plugin, capable of emulating

virtually any real-world acoustic instrument as well as the singing voice.

In chapter 4, by contrast, methods specific to this work are introduced, in order

to address more pragmatic problems in the realm of applied DSP, such as asynchronous

programming and digital instruments libraries and standards. After a brief overview, in

Section 4.1, of the ecosystem in which the plugin is implemented, Section 4.2 introduces

the process of designing and implementing the plugin itself. Section 4.3 explains in detail

the process of designing the neural networks that serve as engines to the plugin, while

Section 4.4 comments on each of those trained networks, that constitute the core of the

individual instruments.

Chapter 5 investigates the results of this work. In Section 5.1 the envelope extrac-

tion algorithm is analyzed, while Section 5.2 investigates the quality of the segmentation

algorithm. The whole plugin is analyzed in Section 5.3.

Finally, chapter 6 comments on the whole work, pointing out its strengths, weak-

nesses, and further research directions.

29

2 BIBLIOGRAPHIC REVIEW

The digitalization of music, as first stated by Max Vernon Mathews (M. V. Math-

ews, 1963), brought limitless possibilities to timbres and sounds, a potential only limited

by the available processing power and the capability of the high-level sound representation

used.

As noted in Smith III (1991), the first limitation, whereas pronounced in the 1960s,

is vastly overcome today, thanks to the advancements in hardware and general digital

computing technology. The problem of the representation — algorithmically generating

the millions of samples necessary to define a digital sound signal from a much smaller,

manageable set of numbers — is still an open question, however.

While significant progress was made in this regard, with a proliferation of digital

sound synthesis techniques, the understanding, and consequently the emulation of real-

world acoustic instruments, is still lacking in many respects.

Considering the piano, perhaps the most important and symbolic instrument in

Western culture (Aho, 2009; Bank et al., 2019), as an example, it is easy to see why.

Piano sounds are generated by an intricate physical process that involves, for a single key,

wooden hammers striking multiple strings that reverberate and interfere not only with

other strings in the same course, but also, in varying measures, with all strings in the

instrument. This complex pattern of vibrating string is propagated to the instrument’s

bridge, body, and so on. This intricate vibration can only be understood as sound after

being transmitted by a fluid — usually the air — to a comparatively small target localized

elsewhere in space: a microphone, or a listener, for example.

Given the importance of the instrument, this complex process was largely studied.

Conklin, for example, published a series of articles in the 1990s investigating the various

aspects of piano construction, and how they influence the instrument’s sound (Conklin,

1996a; Conklin, 1996b; Conklin, 1996c).

More recently, Bank et al. (2019) wrote a review of physical modeling approaches

to the piano, where the algorithms presented range from the more physically accurate

models, intended to further the understanding of the acoustic phenomena that take place

in the generation of the piano sounds, to simplified models suited for real-time synthesis.

Due to the challenges of owning an acoustic piano — from the price to space

requirements, passing through maintenance costs — there is a strong demand for digital

pianos. Despite this demand, the advancements in the understanding and modeling of the

30

instrument, and in general sound synthesis techniques, most digital pianos and virtually

all the commercially successful ones, rely on pre-recorded samples (Bank et al., 2019): the

sound of the digital version is generated by the playback of sounds pre-recorded from an

acoustic piano.

Generally, each key is recorded at many velocities, and the results are quite ac-

ceptable. Nevertheless, phenomena such as sympathetic resonance are neglected in the

emulated instrument.

Perhaps of more concern is the stalemate in which such an instrument, pleasing

to western musical sensibilities, seems to encounter itself: Steinway & Sons, the most

famous piano manufacturer, has demonstrated difficulties in improving its production

process, declaring having reached a plateau (Aho, 2009). If digital pianos can do no more

than imitate their acoustic counterparts, via the use of pre-recorded samples, we have

little hope of further improving the sound of such instruments.

The concern that we might be sonically constrained is also expressed in Aho (2009):

“The actual sounds of existing acoustic instruments might be much less pleasing musically

than many other sounds that could be imagined: musical sounds we could hear, but which

our acoustic instruments cannot produce because of the constraints set by their acoustic

nature.”

More prosaic problems exist, however, in the prevalence of sample-based approaches

in the digital recreation of real-world acoustic musical instruments, such as the huge stor-

age requirements, that prevent their implementation in cheaper, more accessible hardware.

Another problem is the difficulty in incorporating continuous variables in the model. In

the case of the piano, we have, for example, the tuning of the instrument, the position

of the virtual recording device, and the hardness and mass of the hammers, to name a

few (Aho, 2009). Those variables are not easy to change in a physical piano, and are

generally not incorporated in their digital counterparts, with little compromise to their

quality. Observing more flexible instruments, however, such as electric guitars, capable

of bends, tremolos, hammer-ons, pull-offs, tapping, artificial harmonics, and a multitude

of articulations to be accounted for in a sample-based, digital emulation, this problem

becomes more prominent.

The consensus among the music production community is that the use of sam-

ples, and the consequent compromise in flexibility, is unavoidable when a realistic digital

emulation of real-world instruments is the main goal: the general understanding is that

the physical process underlying the sound of most instruments is so complex that, even

31

when reasonably understood, cannot be translated into an accurate real-time model on

current hardware. The lack of realistic models for the (physical) modeling of most but

the simplest plucked string instruments adds to this general understanding.

On the other side of the coin, the relatively recent re-emergence of AI, and the

impact it caused in areas such as computer vision and natural language processing suggest

another approach.

This work can be seen, therefore, as an endeavor to contribute a solution to the

second limitation stated by Mathews (M. V. Mathews, 1963), by leveraging the recent

advancements in machine learning, in the form of a general methodology for the real-

time emulation of acoustic musical instruments and the singing voice. This methodology

bypasses the problem of fully understanding the inner workings of specific instruments

with the use of a novel digital signal representation tailored for neural networks and, for

this very reason, achieves its generality.

While, in so doing, the method presented here doesn’t directly address the more

abstract problem of digitally advancing the timbres of conventional instruments, the ma-

chinery devised during its development can be used, in conjunction with other methods,

to gain a better understanding of those timbres. As will be seen, the method here pro-

posed demands accurate envelope detection and sound segmentation techniques, the likes

of which weren’t found in the current DSP literature, and had to be developed. Those

tools can be used to better understand the nature of musical sounds and signals in general,

with immediate applications to areas such as lossy sound compression.

All the theory explored throughout this work is ultimately applied in a framework

for the emulation of acoustic instruments in general, where instruments are trained using

a collection of samples exemplifying the timbre and the articulations of interest, giving

rise to a set of production-ready digital instruments that can be used directly or as a

virtual studio technology (VST) plugin hosted in any compatible digital audio workstation

(DAW).

In order to provide context, the next section of this chapter is comprised of an

introduction to the history of digital computers and their uses in musical applications

in general. Given the interdisciplinary nature of this work, the following two sections,

in conjunction with Chapter 3, are intended to present the theory necessary for the un-

derstanding of the approaches developed in Chapter 4, with just enough background

information for their full appreciation. This chapter also comments on the state of the

art of the pertinent literature, pointing out relevant applications when appropriate.

32

The tone changes in the subsequent section to a less pragmatic approach, when

the state of the applications of AI in general, and neural networks in particular, to sound

generation, is investigated. The general idea of the third section of the present chapter is

to highlight the gaps in the interface between those areas that this work intends to fill.

2.1 MUSICAL INSTRUMENTS AND DIGITAL COMPUTERS

Music is a staple of humanity’s creativity. Montagu (2007) defines music as sounds

generated deliberately with the aim of provoking emotion. Musical instruments, con-

sequently, can broadly be defined as any tool used for that purpose. In this context,

music can be traced back to immemorial times, with its origins probably motivated by

ritual practices performed by early humans. Whereas the very first musical instrument

was most probably the voice, it might be shortly followed by other rudimentary musical

instruments, likely of percussive nature (Montagu, 2007): Evidence of the use of simple

instruments, such as drums and bone flutes, can be traced back to the Paleolithic era,

more than 30000 years ago (Bovermann et al., 2017).

During the course of human history, musical instruments became more elaborate,

incorporating technological advancements besides responding and also helping to evolve

the predominant aesthetic of music in each society. Despite reaching, along this long

period of evolution, a high degree of sophistication in their design, before the XX century,

musical instruments necessarily relied on mechanical vibrations to generate their sounds.

In a comprehensive timeline of the technology associated with electronic music,

Stubbs (2018) marks the year 1876, with the invention of the Musical Telegraph by El-

isha Gray — a device that broadcasted single notes along the telegraph lines — as the

beginning of the electronic instruments’ era.

Regarding stringed instruments, in 1890, George Breed, a United States Naval

Officer, filed a patent for an electrified guitar. Electricity, however, wasn’t used for am-

plification purposes, serving instead to continually vibrate the guitar strings, leaving the

instrument’s sound acoustic in nature. The patent also suggests the use of the method for

an electric piano, albeit in a less detailed way. The guitar’s design, in addition to differing

considerably from what we now consider an electric guitar, presented some idiosyncrasies

that probably prevented its commercial success (Hill, 2008).

Other authors place the origin of this new electronic era for musical instruments

at the invention of the Telharmonium, patented in 1897 by Thaddeus Cahill, due to

the influence the instrument eventually exercised. The Telharmonium, also known as

33

Dynamophone, was a machine weighing around two hundred tons, intended to synthesize

music, with the use of sinusoidal tones of different frequencies generated with modified

dynamos, to be broadcasted in real-time over the telephone lines (Collins et al., 2007).

Others still, such as Montagu (2007), attribute the beginning of the electronic

instruments to the invention of the Theremin by Lev Termen, at around 1920, on the

grounds of the popularity accrued by the instrument at the time, both in its original

USSR and in the USA.

About a decade later, the first commercially successful guitars started to emerge.

Notorious among them was the Gibson ES-150, in 1936, with a single pickup responsi-

ble for capturing the vibration of the metallic strings (French, 2012). Electric guitars,

due to the mechanical origins of the sound generated, aren’t regarded as pure electronic

instruments.

Be that as it may, the Moog synthesizer was the instrument responsible for popu-

larizing electronic instruments. Implementing the ideas published by Robert Moog (Moog,

1965), it is largely considered the first analog synthesizer, and the first commercial syn-

thesizer.

The 1968 Wendy Carlos’s album Switched-On Bach, featuring Bach compositions

arranged for the Moog synthesizer, achieved critical and popular acclaim (Collins et al.,

2007), helping popularize the instrument, that would also be used by bands such as The

Beatles, Rolling Stones, and Yes.

The theoretical foundation underlying the developments introduced by the process

of electrification, especially concerning the area that came to be known as digital signal

processing, can be traced back to a few centuries before those events, however.

The work of d’Alembert and the introduction of differential equations (Oliveira,

2020), Euler, with the invention of integral transforms (Dominguez, 2016), Bernoulli and

most notably Fourier formed the theoretical basis for the birth of DSP (Alessio, 2016):

how this process happened is described in more detail in Chapter 3.

For the theory to be applied in the form it is known nowadays, however, computers

were needed, and it would be only after the second world war that such machines would

first emerge, with examples such as the Electronic Numeric Integrator and Calculator

(ENIAC) and the Institute for Advanced Study machine (IAS), dating from the mid to

late 1940s. With growing access to computers, the area of DSP started to consolidate

itself in subsequent decades.

Fortunately, parallel to that revolution, another one was taking place, one that

34

would eventually lead to the development of modern digital computers. The need to

process large amounts of data, both in Europe and the US, lead to an increasing interest

in calculating machines. A punched card tabulating system was developed for the US

government to be used in the 1890 census, and became so popular in the first half of the

twentieth century that originated IBM. A few decades later, the company consolidated

itself as a business machine manufacturer, with an income of 20 million dollars by 1928.

This quest for computing machines, and the rudiments of modern computer science,

can be traced back to at least a century earlier, however, as described in Kelly (2014), to

the efforts of Charles Babbage.

Motivated by the desire to improve the process of manufacturing navigational

tables for the English government, Babbage designed his first famous computation ma-

chine, the Difference Engine, in the early 1820s. Despite securing funding, and completing

a working prototype, Babbage never completed a full-scale Difference Engine. Technical

problems encountered along the way led him to investigate the state of the art of English

mechanical systems and eventually conceptualize, about a decade later, the Analytical

Engine, first mentioned in a statement for the English government in 1834.

By suggesting that funding should be shifted to this new machine without having

completed the former and the tables it was supposed to produce, Babbage undermined

the government’s confidence in him. Despite this, Babbage continued to work on the

Analytical Engine for the rest of his life, and secured the interest of people such as Ada

Lovelace, responsible for the most extensive account of the machine at the time.

Ultimately, however, his efforts were insufficient to ensure the construction of the

machine, with Babbage’s failure motivating scientists to momentarily pursue another

path to computing machines: analog computing. This was unfortunate, since Babbage’s

design for the Analytical Engine exhibited all the characteristics encountered in a modern

digital computer, such as separation of arithmetic and storage, and would likely be Turing-

complete (Graham-Cumming, 2010).

Nevertheless, the beginning of the XX century saw the ascension of analog com-

puting, with the term analog coming from the word analogy. Analog computers were

single-purpose machines built as scale models of the problems they were intended to

solve, such as dam building and electrical grid design.

In 1937, inspired in part by Babbage’s concepts, Aiken proposed to IBM the first

designs of the Mark I, to be finalized, after a series of delays, in January 1943, to be-

come the first fully automatic computation machine. It was electro-mechanic in principle,

35

with an abundance of moving parts, and was eventually superseded by strictly electronic

designs.

Parallel to those developments, in the field of mathematics, Turing and Church were

making advancements in the theory of logic, independently arriving at similar results in

the mid-1930s. Turing’s approach, however, involved a conceptual computer, later known

as the Turing Machine, and a proof, described in his article “On Computable Numbers

with an Application to the Entscheidungsproblem” (Turing, 1937), that this idealized

machine could compute any function.

While staying at Princeton University, Turing met John von Neumann, who would

go on to play a prominent role in the invention of the modern electronic computer, inspired

in part by Turing’s work.

John von Neumann would see himself involved in the computer development scene

when he became aware of the ongoing efforts for the construction of the ENIAC, around

1944, a computer that used thousands of valves, and was built to use the decimal sys-

tem. Neumann started to work as a consultant for the team and soon identified many

potential problems with the machine, leading him to start designing a successor capable

of addressing those problems.

His report “A First Draft of a Report on the EDVAC” (Neumann, 1993), orig-

inally from June 30, 1945, laid the basis for modern digital computers. When finally

operational, at the beginning of 1950, the Electronic Discrete Variable Automatic Com-

puter (EDVAC) brought with it the new era of digital computers. From this point on,

the process of popularization of the computer, from a mathematical machine to a general-

purpose appliance, would continue, eventually culminating in the creation and widespread

adoption of personal computers.

Since the early days of digital computers, even when mainframes were the only

available machines, restricted to organizations with considerable resources, people found

ways and motivation to overcome technical limitations and develop artistic applications,

like video games, in their — and the machine’s — spare time.

At the 1940 New York World’s Fair, for example, the Nimatron was first exhibited

(Condon, 1942). It was a single-purpose, electromechanical machine designed to play the

game of Nim, described in Redheffer (1948). Another example is a computer chess game

for programmable machines, written by Turing in 1947, that couldn’t be implemented due

to the limitations of available computers at the time (Donovan, 2010). In the following

year the patent for the cathode-ray tube amusement device, considered the first known

36

example of an interactive electronic game, was granted (Wolf, 2021).

Regarding musical application, in 1957, while working at the Bell Telephone Lab-

oratories, Max Mathews created the MUSIC I, a programming environment intended to

simulate the circuitry for analog musical synthesizers in digital computers (Collins et al.,

2007). His efforts are described in Max V. Mathews (1961), and inaugurate the quest for

digital sound synthesis.

In the seminal paper “The Digital Computer as a Musical Instrument” (M. V.

Mathews, 1963), Max Vernon Mathews, after years of using computers to analyze sounds

at Bell Labs, argued that digital computers could be used not only to aid in composition

and other high-level music-related tasks, but to generate sounds, that could be reproduced

by loudspeaker

The paper highlights that computers are theoretically capable of synthesizing any

sound, proceeding to describe the process in which discrete numbers can be transformed

into sounds and, in so doing, introducing the concept of discrete numbers as samples from

the instantaneous pressure of a sound wave.

To convert those numbers to sound, a digital to analog device, capable of generating

pulses proportional to the magnitude of each number, is to be used, and those pulses

smoothed a posteriori. The paper also highlights the practical necessity of compact sound

representations.

Mathews went on to implement, in 1968, the successor of MUSIC I-IV family, Music

V, in Fortran, the first music programming language to be implemented in a portable

programming language (Collins et al., 2007).

Around that time, in 1965, Cooley and Tukey introduced what is now known as

the fast Fourier transform (FFT) algorithm, in the paper “An algorithm for the machine

calculation of complex Fourier series” (Cooley et al., 1965), one of the 10 most influential

algorithms of the 20th century (Dongarra et al., 2000).

The FFT algorithm, by exploiting symmetries, reduced the complexity of the cal-

culation of the discrete Fourier transform (DFT) from O(N2), where N is the length of the

original discrete signal, to O(N log2(N)), for cases when N is a power of 2. Although this

algorithm was originally discovered by Gauss (Cooley, 1987), and rediscovered at least a

handful of times in the approximately 100 years between Gauss and Cooley (Heideman

et al., 1985; Ceccherini-Silberstein et al., 2018), it became famous in the form proposed

by the latter.

37

2.2 ENVELOPE DETECTION

Envelope detection, also known as envelope tracking, following, or demodulation,

has applications in medicine, sound classification, sound synthesis, seismology, and speech

recognition. Despite its importance, there is no general method to envelope detection,

with most approaches involving manual intervention (L. Yang et al., 2014), for example

in the form of filter design.

The practical interest in the envelope of a signal started with the widespread

adoption of radio communications, even before the advent of digital signals. In this

setting, the problem is usually restricted to the investigation of methods for retrieving

the envelope of narrowband, artificial signals, generally with well-defined frequency ranges

(Turner et al., 2011).

In 1946, Gabor (Gabor, 1946) made use of the then relatively new mathematical

machinery of quantum mechanics to introduce a new representation of a real signal,

using the Hilbert transform to unify its time and frequency-domain representations in

an equivalent complex signal (Hahn, 2007).

The resulting complex signal, which became known as the analytic signal, has

the form A(t) = S(t) +H(S(t))i (He et al., 2016), where S(t) is the original real signal

and H(S(t)), the imaginary part, its Hilbert transform. The envelope of a signal can be

obtained from its representation as an analytic signal simply by computing the complex

modulus of the latter.

This approach for envelope detection is mathematically rigorous, and works well

for narrowband signals, characteristics that helped solidify the Hilbert transform as one

of the most used tools for envelope detection. For broadband signals, however, envelope

detection techniques based on the Hilbert transform yield poor results (Dau, 2012; Jia

et al., 2019) that are even, in some instances, incoherent from a physical standpoint

(Loughlin et al., 1996; L. Yang et al., 2014).

Despite the absence of a general mathematical definition of an envelope for broad-

band signals (Hlawatsch et al., 2008; X. Hu et al., 2012; L. Yang et al., 2014; L. Yang

et al., 2015; Jia et al., 2019), a category that comprises most real-world signals of interest,

most DSP practitioners and researchers agree that an adequate envelope should exhibit

some characteristics, such as smoothness. It is also widely accepted that, in general, be-

sides being a smooth curve, an envelope should ideally be situated as close as possible to

the original signal (L. Yang et al., 2014; L. Yang et al., 2015; Jia et al., 2019), without

38

ever intersecting it.

A formal set of requirements, with the objective of guaranteeing that an envelope

will behave in accordance with physical expectations, is introduced in Section 3.3.6, when

this work discusses approaches to assess the quality of envelopes.

Figure 1 presents an example of a Hilbert envelope, that helps to visualize the intu-

itive differences in envelope quality in the absence of Gaussian noise, and in its presence.

The envelope is extracted from a simple sinusoid, artificially generated, and modulated

by a polynomial.

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

Signal Hilbert Envelope

Figure 1: Envelope of a pure sinusoid with a local frequency of 40 cycles per its N samples,
modulated by a polynomial of degree 3, obtained by the Hilbert transform approach. In
the first half of the samples, the sinusoid is free of noise. In the second half, Gaussian
noise was added to the signal.

As seen, the intuitive definition of an envelope suggests that it should be a smooth

curve; this smoothness requirement implies that the envelope should ideally be comprised

of lower frequencies than the original signal. For real-world signals, such as the one of an

alto singer sustaining a steady note, partially shown in Figure 2, the Hilbert transform

alone provides a poor envelope, since it retains most of the frequencies of the underlying

wave.

Applying a low pass filter, we can transform the result of the Hilbert transform in

order to comply with the smoothness requirement, by removing high frequencies from the

original result. This will potentially lead to undershoots, however, proportional to the

39

power of the high-frequency content of the transform removed without compensation.

11k 11.5k 12k 12.5k 13k 13.5k

−0.5

0

0.5

1

Signal Hilbert Envelope Filtered Hilbert Envelope

Figure 2: Comparison of the envelopes obtained by the Hilbert transform, with and
without further filtering, for a section of the representation of an alto singer sustaining a
steady note. The filtered envelope, while smooth, significantly undershoots the original
signal.

In the context of DSP, the demand for envelope detection algorithms is high (Cae-

tano et al., 2011). Since the temporal envelope of a signal is of primary importance in a

considerable number of applications, various specialized algorithms that take advantage

of prior knowledge about the nature of the signal of interest exist. The algorithm pre-

sented by W. Yang et al. (2014) for the distributed monitoring of fiber optic, or the one

formulated by Assef et al. (2018) in the context of medical ultrasound imaging, are some

examples.

Regarding the psychoacoustic importance of envelopes, on the subject of intelli-

gibility of Mandarin speech, the envelope is as important as the spectral content of the

underlying signal (Qi et al., 2017); in the case of the English language, Shannon et al.

(1995) work illustrates that envelopes modulating a signal consisting mostly of noise were

still able to convey meaning.

Important characteristics of both voice (Zhu et al., 2018) and music (Lokki et al.,

2011), such as emotions and identity, are also conveyed by the envelope modulation of

the underlying signal.

The importance of the envelope in a wealth of applications on one hand, and the

40

absence of a general approach to envelope detection, on the other, lead to a fragmentation

in the literature about envelope detection (Richard Lyons, 2017), that was aggravated by

a lack of a strict mathematical definition of a temporal envelope (L. Yang et al., 2014;

L. Yang et al., 2015; Jia et al., 2019).

2.2.1 The shape of a set of points in two dimensions

Despite being such an elusive concept, the accurate identification of the temporal

envelope of a broadband signal is central to the representation introduced in this work,

as will become clear in Section 5.2. The absence of a fitting algorithm motivated a search

for alternative, less orthodox approaches to envelope detection.

Powerful algorithms exist in the area of computer graphics to transform a cloud of

points in three-dimensional space, a common result of 3D scanning processes, into a 3D

surface.

Considering the most common visual representation of a discrete wave — where

each sample is plotted in a two-dimensional graph where the horizontal axis is usually

proportional to time and the vertical axis proportional to the amplitude of the wave at

each sampled point — it is not difficult to think of each sample of a discrete signal as a

point in the cartesian plane.

What is necessary to enable the use of geometric methods to this problem is a

mapping from this space, where the abscissa and ordinate have different units, to the

cartesian plane; once this mapping is available the DSP problem of extracting the envelope

of a discrete signal can be converted to the geometric problem of defining the shape of a

set of points in R2.

Before, however, it is necessary to settle on a definition of what constitutes the

shape of a set of points, one of the most widely used such definition being the concept of

a convex hull. The term convex hull appeared first, in English, in Birkhoff (1935), and

was consolidated in the literature shortly after (Dines, 1938). Berg et al. (2008) defines

the convex hull of a set of points in R2 as the smallest convex subset of the plane that

contains all the points in the set. The term convex hull is, as noted in Dines (1938), ill

chosen, since the definition refers to the whole region encompassed by the points, and not

only the frontier, as the term “hull” implies.

Intuitively, one can imagine each of the points that are part of the set as the head of

nails in a wooden board, around which a rubber band is stretched. The regions delimited

by the polygon formed by the rubber band constitute the unique convex hull of the set.

41

0 10 20 30 40 50

0

5

10

15

20

25

30

Points Convex Hull

Figure 3: A set of points and its corresponding convex hull.

The region corresponding to the convex hull of a set of points in two-dimensional

space will always be convex, as the name implies. For sets of points with relatively

extensive “concavities”, this leads to a very overestimated convex hull, and consequently,

boundary.

The concept of alpha shapes, also known as concave hulls, was introduced by H.

Edelsbrunner et al. (1983) to address this limitation. Alpha shapes are a mathematically

well-defined generalization of the convex hull of a finite set of points, closely related to

the Delaunay triangulation and Voronoi diagrams of those points.

Intuitively, one can imagine that, instead of the rubber band in the convex hull

example, one has a wooden disk, lying on the wooden board where the nails are fixed.

Without lifting the disk, one can move it freely around the set of nails. The nails that

can be touched by the disk in those settings are the ones that are part of the concave hull

of the set of nails.

In the two-dimensional case, a more formal definition is as follows: given a fixed

radius α, we take all possible pairs of the points in the set, and try to construct a circle

passing through those pairs that define an open circumference not containing any other

point of the set. If we succeed, the edge defined by those two points is part of the boundary

of the set.

Figure 4 illustrates an alpha shape, with α = 10, of a set of points. Note that two

42

points of the set lie on the circle illustrated, on the left-hand side of the circle, but the

open disc it defines contains no points of the set. A similar construction is possible for

every point at the frontier. Conversely, any circle of radius α = 10 containing at least one

of the interior points defines an open disc that also contains at least another point of the

set.

−10 0 10 20 30 40 50 60

0

10

20

30

40

Figure 4: A set of points and its corresponding alpha shape.

Figure 5 presents a comparison between the two aforementioned definitions of the

shape of a set of points, as obtained by the convex hull and the alpha shapes. In this

example, the shape obtained with the alpha shapes definition, using a radius of 150 units,

conforms better with the intuitive notion of shape.

43

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350
Points Convex Hull

Figure 5: Comparison between the convex hull and an alpha shape of a set of points.

The alpha shape for each specific radius α is unique. Alpha shapes can also be

considered as a generalization of convex hulls, since, when the radius alpha tends to

infinity, the alpha shape of a set tends to its convex hull.

Consider, for example, the artificially generated discrete wave in Figure 6, where

the links between consecutive samples were de-emphasized to highlight the “set of points”

nature of a signal: two alpha shapes, with different values of α, and the convex hull are

illustrated. As α increases, the contour of the set of points becomes coarser, and closer

to the convex hull.

44

0 50 100 150 200

−1

−0.5

0

0.5

1
Convex Hull Signal

Figure 6: A discrete signal interpreted as a set of points in the Cartesian plane, two alpha
shapes, and the convex hull defined by it.

Alpha shapes are used in areas such as detection of features in images (Varytimidis

et al., 2016), reconstruction of surfaces from clouds of points (Wu et al., 2015) and spec-

troscopy (Xu et al., 2019).

This last work, which involves the estimation and removal of the Blaze function —

a kind of envelope — of an echelle spectrograph, is particularly illustrative of the potential

synergy between geometric and DSP approaches.

Other steps in the direction of applying geometric algorithms to envelope detection

were made by C. Yang et al. (2015b), with an algorithm based on the construction of a

skeleton underlying the digital wave of interest, and by C. Yang et al. (2015a), via the

direct application of computer vision methods to the task of envelope detection.

2.3 SIGNAL SEGMENTATION

Signal segmentation is used in a wide range of applications, such as seismic signals

analysis (Popescu, 2014), condition monitoring of industrial processes (Aiordachioaie et

al., 2019), bioacoustical animal recognition (Colonna et al., 2015), heart sound segmen-

tation (Moukadem et al., 2013) and electrocardiogram signals analysis (Andreão et al.,

2006), to name a few.

Segmenting a signal in time is also a crucial pre-processing step in many audio

45

applications, a step that can substantially impact the quality of further processing tasks

(Rybach et al., 2009). The approaches to signal segmentation are diverse, and generally

tailored to specific applications: Dessein et al. (2013), for example, proposes a real-time

method to segment an audio signal based on the monitoring of the information rate of

the incoming signal; the approach accommodates various homogeneity criteria in order to

divide the signal into the segments of interest.

An algorithm specific for music signals segmentation, based on the variance of the

spectral domain, is presented in Krymova et al. (2017). Hubert et al. (2018) presents a

distance-based maximum entropy Bayesian approach to the segmentation of subaquatic

audio recording.

More recently, machine learning approaches were presented in Jingzhou et al.

(2019), with the use of a Convolutional Neural Network (CNN) to segment audio from

a radio station broadcasting, and Y.-C. Chen et al. (2019), where a Recurrent Neural

Network (RNN) was employed to jointly segment and classify words in utterances.

Most methods divide a signal into homogeneous segments (Dessein et al., 2013),

according to homogeneity criteria tailored to the specific needs of the application. In

this context, the technique of Concatenative Sound Synthesis (CSS), a relatively young

research field started in the early 2000s (Schwarz, 2005), is one prominent example.

In Zils et al. (2001), one of the first papers dedicated to the theme, the technique

is dubbed musaicing, a combination of the words musical and mosaicing. The paper is

focused on the problem of automating sample selection and retrieval.

The basic approach for CSS consists of segmenting the original sound files into

meaningful atomic signals, that are saved, alongside their descriptions, in a database.

During the synthesis process, those “atoms” are then retrieved, according to a symbolic

description, and are concatenated together (Schwarz, 2005).

Vocaloid, a singing voice synthesis software vastly successful in Japan (Kobayashi

et al., 2019), uses CSS (Kenmochi et al., 2007). Each “singer” consists of a database of

phonetic sounds that are glued together according to the instructions inputted by the

user in a virtual piano roll, to generate the sang phrases.

The original signals used in CSS need not be recorded specifically for this pur-

pose, however: in Maestre et al. (2009), for example, the authors use recordings of jazz

saxophone to generate the database used to synthesize new melodies.

Many concatenative synthesis algorithms, especially those related to speech, rely

on a pitch-synchronous overlap-add (PSOLA) approach for modifying pitch, duration,

46

and other characteristics of sounds during concatenation; those modifications can be per-

formed either in the frequency domain (FD-PSOLA) or in the time domain (TD-PSOLA)

(Moulines et al., 1990).

An explanation of the PSOLA method is given in Valbret et al. (1992), in the con-

text of speech: The original signal is first decomposed into short-term signals proportional

to the local pitch-period and synchronized with them. These short-term signals are thus

placed at a pitch-synchronous rate on the voiced segments of the original signal and at

a constant rate on the unvoiced segments. During the synthesis step, a new set of pitch-

marks is designed in accordance with the desired prosodic modifications. Overlap-add is

then used to join the segments, that are finally filtered to produce the final result.

Segmenting a signal into pseudo cycles, on the other hand, is an overlooked area in

the literature, and can conceptually be seen as dividing a signal into fundamental building

blocks.

Such segmentation can also be interpreted as the foundation for an alternative

representation of a signal, one that describes the signal as a basic waveform evolving as

a function of an independent variable, usually time. An example of this interpretation

is illustrated in Figure 7. In the figure, each pseudo cycle is shown, in order, from

front to back: pseudo cycle number 0 would be the first pseudo cycle obtained using the

segmentation algorithm. From left to right, the figure shows the indices of each pseudo

cycle. The pseudo cycles were zero-padded to the length of the longest pseudo cycle, a

fact that can be seen in the mostly white and plane region to the right of the figure.

47

Figure 7: Discrete representation of the sound of a bassoon, segmented into its pseudo
cycles.

Traditionally, however, discrete signals are represented in the time or frequency

domains. Those representations are deemed equivalent, in the sense that a given signal

can be unequivocally transformed from one to another via a well-defined mathematical

algorithm, the DFT, presented with more detail in Section 3.1. The existence of an

efficient implementation, in the form of the FFT, helped popularize this convention of

interchangeably representing a discrete signal in the time or frequency domains, according

to convenience.

Alternative representations for digital signals are normally not designed to be re-

versible, but are meant to encode, in a compact manner, characteristics of the original

signal, generally for classification purposes.

Vocoders, created with the aim of encoding and resynthesizing speech (Mills, 2012),

are an example of an exception. Based on the work presented in Fujimura (1968), where

the multi-band representation of speech, and its advantages, started to be studied, Griffin

et al. (1988) introduced the Multiband Excitation Vocoders, expanding vocoders capabil-

ities to high-quality speech generation.

The representation introduced in Levine et al. (1998), which divides a given signal

into sinusoids, transients, and noise, with the aim of facilitating pitch-shifting, between

other manipulations, is another example of reversible representation.

48

A more general treatment of this problem can be seen in Serra et al. (1990), where

the Spectral Modeling Synthesis (SMS) approach to sound synthesis is introduced. The

basic methodology extends the research presented by Serra in his Ph.D. thesis (Serra,

1989) and consists of extracting the “deterministic” part of a signal, which is thus repre-

sented as a series of time-varying sinusoids. This part is removed from the original signal,

leaving what is to be considered the stochastic part, or “noise floor”. This residual noise

is then modeled using white noise filtered through a time-varying filter.

Since its inception, this approach gained popularity, in part due to the possibility

of extracting information from records of real sounds, that can be reproduced and altered

afterwards (Serra et al., 1997). This potential for sound transformation is explored in Serra

et al. (1997) and, ultimately, in Bonada et al. (2011), where techniques for manipulating

high-level attributes of the representation, in order to make the transformation process

more intuitive, are introduced. An entry on SMS can be found in https://www.upf.edu/

web/mtg/sms-tools, where the main publications on the method, besides an extensive

list of related papers, can be found.

In Mcaulay et al. (1988), the technique of Sinusoidal Transform Coding (STC) is

introduced. It consists, like in Serra et al. (1990), of representing a sound signal as a

series of sinusoids, whose amplitudes, frequencies, and phases vary in time. Unlike in

Serra et al. (1990), however, the algorithm is exclusively designed to process voice signals,

allowing for increased robustness against acoustic background noise.

The present work introduces, in Section 3.4, a novel representation that, in a man-

ner similar to the STC, can be used to decompose a signal in time-varying sinusoids, albeit

ignoring background noise. Since this representation operates at the level of individual

pseudo cycles of signals with high harmonic content, it is able to organically incorporate

the stochastic part of the sound.

Although not meant to be completely reversible, the representation can in the

future be extended to account for the discarded noise, in a similar manner to Levine’s

(Levine et al., 1998) representation.

2.4 ARTIFICIAL INTELLIGENCE AND SOUND SYNTHESIS

Since ancient times, humanity has dreamed of AI. The dawn of the first computing

machines, such as the ENIAC in 1946, brought with it the promise that what we now call

general AI was close (Donovan, 2010). Although this proved not to be the case, artistic

applications blending early implementations of AI are abundant, and music was one of

https://www.upf.edu/web/mtg/sms-tools
https://www.upf.edu/web/mtg/sms-tools

49

the most prominent objects of interest: as early as 1957, Illiac Suite (Hiller et al., 1959),

the first AI generated composition (Miranda, 2021), was presented.

The interest in the topic, and the approaches proposed, continued to increase

throughout the decades, as can be seen in the following compilations: the one presented

by Miranda (2000) offers an early picture of the area, that had an exploratory nature

at the time. A couple of years later, Carbonell et al. (2002) present the annals of the

2nd International Conference on Music and Artificial Intelligence (ICMAI 02), where a

predominance of interest in analyzing various aspects of music can be seen.

The contents of Miranda (2021), compiled 19 years later, show that the area evolved

enormously, shifting to a more applied paradigm, with an abundance of practical appli-

cations.

The work in Miranda et al. (2015) also provides insight into this progress, by

analyzing the theme as it evolved from the point of view of publications in the “Organised

Sound” journal, one of the most prominent publications in the area of technology applied

to music.

While high-level approaches have been seen since the beginning of computers, AI

based applications focusing on sound synthesis at raw audio level emerged more recently,

due to computational constraints (Hawley, 2020), and are rapidly gaining space, especially

with approaches based on deep neural networks (Kiefer, 2019).

One of the first such applications was presented in Oord et al. (2016a) and took in-

spiration from advancements obtained with deep neural networks in the areas of computer

vision and text processing. It introduces the WaveNet model, based on the PixelCNN

(Oord et al., 2016b) architecture. The WaveNet uses dilated causal convolutions, an ar-

chitecture where each output is related to every previous output, but that avoids the

recurrent nature of RNNs, achieving greater efficiency. The original paper evaluates the

model on the generative tasks of multi-speaker speech generation, text-to-speech, and

music generation. Besides, the model was shown to perform well on speech recognition

classification tasks, with small modifications. Results can be heard at WaveNet’s website

deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

Using RNN, Mehri et al. (2016) present another architecture dedicated to the

generation of raw sound. The work introduces an end-to-end audio synthesis model based

on RNNs, that avoids the efficiency problems generally associated with such architectures

by employing different modules operating at different clock rates. The higher levels of

the proposed architecture operate in sets of frames of variable size, offering adaptability

deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

50

in face of the available processing power. The model is evaluated on the task of speech

synthesis, the synthesis of onomatopoeic sounds — sounds such as screaming, coughing,

and heavy breathing — and the synthesis of piano sounds, using as a basis a database

of Beethoven’s piano sonatas, besides being compared with a reimplementation of the

WaveNet architecture.

Also inspired by advancements in computer vision, Engel et al. (2017) introduce

a WaveNet-style model and the NSynth dataset of musical notes. The WaveNet inspired

architecture presented is shown to learn a semantically meaningful hidden representation

that can be tuned to change timbre and other dynamics of sounds during playback.

In contrast with architectures such as WaveNet and SampleRNN, this paper proposes

the use of an autoencoder, removing the need for external conditioning for longer-term

dependencies. The tasks of note reconstruction and instrument and pitch interpolation

are used to evaluate the architecture proposed.

Engel et al. (2019) investigate the performance of Generative Adversarial Net-

works (GANs) in the task of raw sound generation, and suggest that this architecture has

the potential to outperform WaveNet based architectures. The proposed model, dubbed

GANSynth, tries to improve the efficiency of previous autoregressive AI based architec-

tures, mitigating the problem of the inefficient ancestral sampling approach used in those

models.

Again inspired by advancements in the computer vision area, the paper proposes

an architecture that learns the instantaneous angular frequency of a signal and is able to

generate examples approximately 54,000 times faster than the WaveNet architecture.

Autoregressive models, such as WaveNet, model local structure but have slow it-

erative sampling and lack global latent structure. In contrast, GANs have global latent

conditioning and efficient parallel sampling, but struggle to generate locally-coherent au-

dio waveforms.

A similar approach is presented in Donahue et al. (2019), where the WaveGAN

architecture is introduced. The work investigates the generation of one second of audio

with the use of waveform and spectrogram representations. Examples, generated on

demand, can be heard at chrisdonahue.com/wavegan.

A very comprehensive investigation of applications of deep generative models for

sound synthesis can be found at Huzaifah et al. (2021), while an account focused on the

sound representations used in those algorithms is available at Natsiou et al. (2021).

chrisdonahue.com/wavegan

51

2.5 THE MIDI SPECIFICATION

The MIDI format is a high-level music notation, that abstracts the timbre and

other instrument-specific characteristics, and focuses on representing the notes, their du-

ration and velocity, besides other information about the performance dynamics. In other

words, the goal of the standard is to encode Human gestural control information, such as

keypresses and knob turns (Loy, 1985). With the popularity of synthesizers at the begin-

ning of the 1980s, the necessity for a standard to assure compatibility between products

from different manufacturers became evident.

In 1981 a paper was published (Smith et al., 1981) where a proposal for a Uni-

versal Synthesizer Interface was presented; this recommended format, after incorporating

suggestions from the leading synthesizer manufacturers at the time, served as the basis

for the MIDI standard, announced to the public in 1982 (The MIDI Association, 2022).

The goals behind the development of the MIDI standard were the possibility of

connecting hardware from different manufacturers together, the possibility of interfacing

them with digital computers, and protection of hardware from obsolescence (Loy, 1985).

Version 1.0 of the MIDI standard was conceived as a two-layer specification, in the

sense that it standardized the hardware used to link music devices and the format of the

data that was to be exchanged through those physical channels (Loy, 1985).

From the hardware perspective, devices implemented following the MIDI standard

have a MIDI input, to receive information, and a MIDI output, to send signals. They

can also have a MIDI THRU, that passes the received information forward. In all those

channels, asynchronous serial data flows in a single direction (Loy, 1985). The software

part of the specification is based on the following entities: mode, of which there are three;

channel, of which there are sixteen; and commands.

Commands are the entities that reflect the musician’s gestures, such as note on

and note off ; the commands can be labeled with a specific channel, enabling the receiver

of the commands to route those messages accordingly.

The three modes are omni, which enables the commands to navigate through all

channels; the poly mode, which causes devices to use a single channel, and causes notes

activated at the same time to form chords; the mono mode, which functions similarly,

but causes a portamento effect, where the command to activate a note deactivates the

anterior sounding note (Loy, 1985).

Despite having become, as early as 3 years after its publication, the de facto stan-

52

dard for the communication between musical instruments, the format is not without its

flaws (Loy, 1985). From the beginning, it was clear that the standard favored piano-like

instruments, for example. Also, when interfacing with digital computers, the commands

need to be time stamped, something that wasn’t foreseen by the original specification

(Loy, 1985).

Six years after the publication of the MIDI specification, and after its widespread

adoption, Moore (1988) pointed out in his publications some of the limitations of the

format, from a musical perspective. The most problematic aspects were the uncertainty

in the amount of delay, especially in live performance, and the event-driven orientation of

the protocol, detrimental to the adoption of a continuous approach that would be more

suited for some non-keyboard-based instruments.

Recently, in 2020, the MIDI Manufacturers Association (MMA), a non-profit or-

ganization established in 1985 to supervise the MIDI specification, agreed on the version

2.0 specifications for the format. This new version addresses some of the deficiencies of

the original format, most notably with the introduction of continuous commands, and the

possibility of embedding annotations in commands.

Regarding the MIDI format, the plugin implemented in this work listens for note

on and note off commands, representing instructions to start and stop the sound asso-

ciated with a particular frequency; these commands can be equated with the press and

release, respectively, of the keys of a keyboard, with the difference that a typical electronic

keyboard, like a grand piano, has 88 keys, while the MIDI specification has a total of 128

notes, represented by the integers from 0 to 127. Each note command is associated with

a velocity that, in the keyboard analogy, represents the force with which the key was

pressed. The values of the velocity are also represented by integers from 0 to 127, with

zero representing the lightest intensity and 127 the maximum intensity of activation.

Considering the standard piano tuning, where the note A4 represents a frequency

of 440 Hz, the MIDI note number and the frequency it represents are linked via Equation

1.

f = 4402
key −69

12 (1)

Following the MIDI standard, the plugin also listens to information not bundled

in note commands, that is, information that can change at any time, and in the case of

the implemented plugin, must be incorporated in the sounding note in real-time. One

53

of those instructions is the commands related to manipulation of the Mod Wheel, which

also is represented by an integer from 0 to 127, and is used by the plugin to change the

vibrato dynamics of the synthesized sound.

The movements of the Pitch Wheel of the controller, likewise, are used to change

the pitch of the currently sounding note, as is customary, emulating a bend effect. This

information comes in the form of an integer from 0 to 16383, where the integer 8191

represents the neutral position.

54

3 PROPOSED TECHNIQUES

The first two sections of this chapter are concerned solely with waves, due to their

conceptual importance in the work proposed. The first section presents waves in general,

pointing out the difficulties in their precise definition, and introducing theoretical results

that help to solidify the intuition of what a wave is.

The section that follows is concerned with discrete signals, their relationship with

their continuous counterparts, and the nomenclature used in the rest of the work. Those

chapters prepare the reader for the introduction, in Section 5.2, of a new signal represen-

tation, and particularly the interpretation of that representation.

The two algorithms that serve as basis for the representation introduced in Section

5.2 are developed in the last two sections of this chapter.

The third section illustrates the development of the envelope detection algorithm.

The problem is formalized in Section 3.3.1; Section 3.3.2 introduces some simplifications to

the task of envelope detection that arise from the envelope definition adopted in this work.

Section 3.3.3 explores the geometric characteristics of envelope detection and formalizes

how this classic DSP problem can be transformed into the geometric problem of finding

the shape of a set of points. In Section 3.3.4 the concept of discrete curvature is defined,

and a new discrete curvature measurement is introduced. This measurement is used in

Section 3.3.5 to discriminate which samples of a discrete signal belong to the envelope,

circumventing the problem of accounting for the inherent uncertainty of the sampling

process that generated the discrete signal from an unknown continuous one.

The fourth section of this chapter introduces the signal segmentation algorithm.

After the algorithm is presented, Section 3.4.1 investigates how a compact representation

can be derived from the output of the segmentation algorithm, and explores its potential

for compression purposes.

3.1 WAVES

In Mandel et al. (1975), a mechanical wave is described simply as a perturbation

that propagates itself. Whitham (1999) opts for an intuitive definition of a wave, refined

by the mathematical development of the theme.

It is not necessary, however, in the context of the present work, to investigate

the most general definition of waves. As is clear when thinking about electromagnetic

waves, for instance, such a general definition would have to account for waves that don’t

55

need a medium to propagate. We are, instead, interested in mechanical waves, and,

more specifically, how they behave in solids. Although ultimately, all sounds come to us

propagated through the air — a fluid — for our immediate purposes, we will assume that

the movement in the vibration source is proportional to the changes in air pressure that

will ultimately stimulate the listener’s auditory system.

Deriving d’Alembert’s wave equation, as will be done below, besides mathemati-

cally grounding the idea of a wave, helps to give a sense of what is commonly excluded

from physical modeling theory. All simplifications and assumptions will become explicit

in this exercise, helping to highlight, later in the work, how the model produced reincorpo-

rates them using neural networks, bypassing difficult tasks such as modeling nonlinearities

both in the source and the propagation medium.

For the derivation, we follow the path presented in Clelland et al. (2013), that is

a refinement of a common approach found in the literature (e.g. Coulson, 1977; Fletcher,

1998; Garrett, 2017), where little more than Newton’s second law and rudimentary cal-

culus knowledge is needed; for a more involved derivation, based on strength of materials

theory, that considers, for example, Young’s modulus and the shear force acting on the

string, we refer the reader to Mandel et al. (1975).

The derivation presented here arises from the observation of the behavior of trans-

verse waves in a string. It is also interesting to note that, as shown in Morse et al. (1987)

and in much more detail in Bruneau (2006), the same result can be obtained using the

theory of fluid mechanics, starting from the analysis of plane, longitudinal waves, travel-

ing in the same direction of the propagation in a tube with a uniform cross-section in the

first case, and the theory of wave propagation in the second case.

Considering the infinitesimal segment of an uniform string with linear density ρ

shown in Figure 8, and the forces acting on it to restore the balance after a perturbation,

and assuming that each point of the string moves only in the vertical direction, one

can therefore interpret y(x, t) as the scalar, perpendicular distance from the horizontal

direction to a point on the string as a function of the point’s abscissa x and the time t.

56

x x +∆x

y(x+∆x,t)

θ(x,t)

0

T(x +∆x,t)

y(x,t)

F

θ(x +∆x,t)

T(x,t)

Figure 8: An infinitesimal segment of a long string with constant density.

From Newton’s second law, the resulting (vertical) force F acting on the string

segment between x and x + ∆x can be described as the mass ρ∆x of the segment times

its acceleration ∂2y(x+∆/2,t)
∂t2 and must be equal to the resultant of the tension, that is,

T (x + ∆x, t) sin(θ(x + ∆x, t)) − T (x, t) sin(θ(x, t)), enabling one to write Equation 2.

Additionally, the resulting horizontal force acting on the segment must be zero and we

can thus write Equation 3.

T (x + ∆x, t) sin (θ(x + ∆x, t))− T (x, t) sin (θ(x, t)) = ρ∆x
∂2y(x + ∆x

2 , t)
∂t2 (2)

T (x + ∆x, t) cos (θ(x + ∆x, t))− T (x, t) cos (θ(x, t)) = 0 (3)

For small values of ∆x, due to stiffness, we can assume that the string segment is

a straight line and say that cos (θ(x, t)) = cos (θ(x + ∆x, t)) = (∆x/2)/(hypotenuse/2) =
∆x/hypotenuse, sin (θ(x, t)) = (y(x + ∆x/2, t)− y(x, t)) /(hypotenuse/2) and that sin (θ(x + ∆x, t)) =
(y(x + ∆x, t)− y(x + ∆x/2, t)) /(hypotenuse/2), with hypotenuse ≈ ∆x/2.

Subtracting Equation 3 from Equation 2, performing the above substitutions and

dividing the resulting equation by ∆x yields Equation 4:

57

2T (x, t)− 2T (x + ∆x, t) + 4T (x+∆x,t)
(

y(x+∆x,t)−y(x+ ∆x
2 ,t)

)
−4T (x,t)

(
y(x+ ∆x

2 ,t)−y(x,t)
)

∆x

∆x

= ρ
∂2y(x + ∆x

2 , t)
∂t2

(4)

After taking the limit of Equation 4 when ∆x tends to zero we have Equation 5.

T (x, t)∂2y(x, t)
∂x2 + 2∂T (x, t)

∂x
− 2∂T (x, t)

∂x

∂y(x, t)
∂x

= ρ
∂2y(x, t)

∂t2 (5)

Assuming constant tension, such that T (x, t) = T , both in time and along the

string, it is possible to rewrite Equation 5 in the form shown in Equation 6, since all the

partial derivatives of the tension are now zero.

∂2y(x, t)
∂t2 = T

ρ

∂2y(x, t)
∂x2 = c2 ∂2y(x, t)

∂x2 (6)

Equation 6 is a second-order linear partial differential equation known as the wave

equation, responsible for describing transverse waves in a string using the framework of

classical mechanics. The quantity c =
√

T
ρ

represents the speed of the wave propagation,

as it moves along the string.

d’Alembert was responsible not only for this formulation, setting the physical units

in a way that makes c = 1, but for the introduction of the concept of differential equations

as a new field inside calculus, in order to deal with oscillatory problems (Oliveira, 2020).

He also proposed a general solution for this equation of the form y(x, t) = f(x +
t) + g(x− t), and applied the boundary conditions y(0, t) = y(L, t), where L is the length

of the string, to arrive at y(x, t) = f(x + t) + f(x − t), where f is a periodic, odd, and

everywhere differentiable arbitrary function (Wheeler et al., 1987).

The concept of differential equations attracted the interest of Euler who, besides

expanding the general theory of differential equations, offered a different take on Equation

6 (Demidov, 1982), explicitly introducing c in the equation, and becoming thus responsible

for its most recognizable form, as shown in Equation 7, as well as its association with the

plucked string.

∂2y(x, t)
∂t2 = c2 ∂2y(x, t)

∂x2 (7)

58

With the introduction of c, the general solution proposed by Euler takes the form

y(x, t) = f(x+ct)+g(x−ct) and, applying the same boundary conditions y(0, t) = y(L, t),
gives rise to Equation 8.

y(x, t) = f(x + ct) + f(x− ct) (8)

Received with controversy, however, was the new characterization of f : Euler

argued that f could be any freeform curve in the interval between 0 and the length L of

the string, provided this curve extends itself, with odd periodicity, along the whole real

line (Wheeler et al., 1987).

We are tributary to Bernoulli and, later, Lagrange, for the rudiments of the solution

in the form of an infinite sum of sinusoids (Wheeler et al., 1987). Although this approach

introduced by Bernoulli would, about half a century later, be corroborated by Fourier

via the principle of superposition, it was received with skepticism by both Euler, that

argued that this approach couldn’t be general enough to represent arbitrary curves, and

d’Alembert, under the argument that only one mode of vibration could physically exist.

It is interesting to note that, from a mathematical perspective, the Fourier theory

can be seen as a natural development of this discussion, it was revolutionary from a

physical and, ultimately, acoustical perspective.

Until this point, we have followed a very long and incremental path of investiga-

tion, initiated in antiquity by Euclid with the conceptualization of the monochord, an

instrument designed mostly as a thought experiment consisting of a single string and a

movable bridge. This idealized instrument served as the theoretical platform for the in-

vestigation of sound for a couple of millennia, and around the time of d’ALambert, Euler

and Bernoulli, its weaknesses were becoming more evident (Lostanlen et al., 2019).

The term timbre, for example, first appeared around that time, coined by Jean-

Jacques Rousseau in his entry about the three main characteristics of sound in Diderot’s

Encyclopédie (Diderot et al., 2021), published in 1765. It was clear to him that the timbre

wasn’t directly related to the pitch or the intensity of a sound, the aspects the monochord

was designed to explain, but was nevertheless important, as it permitted to distinguish,

for example, the same note, at the same intensity, played on a flute or on a guitar (Dolan,

2013).

The Encyclopédie had d’Alembert as other of its editors, and Rousseau, both in his

entry and directly, communicated to him the necessity of improvements in the theory of

59

sound in order to account for the timbre. This motivated the publication of the Elements

of Music (d’Alembert, 1752), where d’Alembert attempts to move away from the classical,

monochord-based, Greek paradigm, to establish a more complete description of sound.

This updated description was to begin to take shape, albeit indirectly, with the

publication of Fourier’s Analytical Theory of Heat (Fourier, 1822), and the birth of har-

monic analysis. The work of Fourier, when interpreted through the lens of acoustics,

enables the decomposition of an arbitrary sound signal into a sum of sinusoids (Lostanlen

et al., 2019). Consider a continuous, possibly complex, signal y(t) as a function of time

t ∈ R, with −∞ ≤ t ≤ ∞. We have that:

Y (f) = F{y(t)} =
∫ ∞

−∞
y(t)e−2πftidt (9)

y(t) = F−1{Y (f)} =
∫ ∞

−∞
Y (f)e2πftidf. (10)

Y (f) and y(t) are often referred to as a Fourier pair, in the sense that they represent

the same entity in two different forms. A discussion of the conditions under which this

identity holds can be found in Stein et al. (2003), while its derivation and proof are

available at D’Angelo (2013).

The discrete-time Fourier transform (DTFT), conceptually, consists of applying

the Fourier transform to a discrete signal, generating a function continuous in frequency.

Mathematically, it is an operator that maps a discrete signal to a function that takes a real

value, representing a frequency, and returns a complex value, that can be interpreted as

this frequency’s amplitude and phase (Staff, 2008), in the context of the discrete signal.

Sampling the DTFT at equally spaced intervals in frequency corresponds to the DFT

(Oppenheim et al., 2013), the discrete version of the Fourier transform in both domains.

In the context of this work we are more interested in the DFT, the transformation

shown in Equation 11, and its inverse, shown in Equation 12. In those equations n and

k are discrete quantities belonging to the set of positive integers, analogous, respectively,

to the continuous variables t and f in Equations 9 and 10.

Considering x0, x1, · · · , xN−1, a finite sequence of N possibly complex numbers

that could, for example, be obtained by sampling a continuous signal, such as y(t), at

regular intervals. Its frequency-domain representation can be obtained using Equation

11.

60

Xk = 1
N

N−1∑
n=0

xne−2πkni/N (11)

Conversely, the original signal can be retrieved from any sequence of the form

XiN , XiN+1, · · · , XiN+N−1, with i ∈ N, since the frequency domain representation is pe-

riodic with period N . The sequence X0, X1, · · · , XN−1 of N complex numbers, obtained

when i = 0, will be considered in the present work the default frequency-domain repre-

sentation, and its conversion back to the time domain is shown in Equation 12.

Equations 11 and 12 are almost identical, except for the sign of the term 2πkni/N

and the factor 1
N

multiplying, in this case, Equation 11. While this factor is more com-

monly found multiplying the inverse discrete Fourier transform (IDFT) some authors,

such as Bracewell (2000) and Kammler (2008), prefer this presentation (Amidror, 2013).

This work adopts this less popular convention since it enables the amplitude of the indi-

vidual sinusoids that form the signal to be derived directly from the absolute value of the

respective entry in the frequency-domain representation.

xn =
N−1∑
k=0

Xke2πkni/N (12)

Figure 9 illustrates the DFT concept: the red signal in the figure, representing a

complex signal, is obtained by the summation of the multi-colored sinusoids, each one

with a particular frequency and phase, whose individual amplitudes can be seen in the

blue line on the figure.

61

Figure 9: A complex signal, in red, decomposed into its sinusoidal components. The
amplitude of each component can be seen in the blue line.

Since we are concerned, in this work, with purely real signals, it is appropriate to

introduce some modifications to the aforementioned representations, to put the transform

in a more straightforward form, for the reason that implementations designed to deal

exclusively with real signals can offer better efficiency (Ersoy et al., 1988).

Noting that e2πkni/N = cos(2πkn/N)+i sin(2πkn/N), and that Xk ∈ C is a complex

number that can, thus, be written as Rk + iIk, with Rk, Ik ∈ R, Equation 12 can be

rewritten as

xn =
N−1∑
k=0

(Rk + iIk) (cos(2πkn/N) + i sin(2πkn/N))

and subdivided into two summations:

xn =
N−1∑
k=0

(
Rk cos

(
2πkn

N

)
− Ik sin

(
2πkn

N

))
+i

N−1∑
k=0

(
Ik cos

(
2πkn

N

)
+ Rk sin

(
2πkn

N

))
.

If xn ∈ R ∀ n, the imaginary part of the equation must be zero, and the equation

can be reduced to a purely real summation, such as

xn =
N−1∑
k=0

(
Rk cos

(
2πkn

N

)
− Ik sin

(
2πkn

N

))
.

62

This equation can be represented more compactly, however, if we consider ak =√
Rk

2 + Ik
2 = |Xk| and φk = tan−1 (Ik/Rk) = arg(Xk), where arg is a function that

returns the argument of a complex number:

xn =
N−1∑
k=0

ak cos
(

φk + 2πkn

N

)
. (13)

This representation more closely matches the intuition presented in Figure 9 and,

as will be seen, the synthesis algorithm presented in Section 5.2.

3.2 RELATION BETWEEN CONTINUOUS AND DISCRETE WAVES

It is important at this point to establish a correspondence between a continuous

and a discrete wave, as the latter will be the object of most of this work. To do that we

will define a simple continuous sinusoidal wave of the form s(t) = a cos (φ + 2πft), where

a ∈ R≥0 is the amplitude, φ ∈ R≥0, 0 ≤ φ < 2π is the phase, f ∈ R≥0 is the absolute

frequency of the wave in Hz, and t ∈ R is time in seconds.

The cosine function is used for twofold reasons: its use helps to underline the

periodic nature of the signal and establishes a parallel with Equation 13. It is important

to keep in mind, however, that this discussion applies to any arbitrary periodic function

of the form g(x) = g(x + p) ∀ x, x + p ∈ dom(g), where dom is the domain of the function

g and p ∈ R. This will be further illustrated in the discrete treatment of the problem,

below.

If we were to sample s(t) at regular intervals for a definite period of time, that is, to

measure the value of the function with a constant sampling rate of fs Hz, neglecting errors

of measurement, we would have a finite discrete representation of part of the continuous

wave of the form xn = a cos
(
φ + 2πk n

N

)
where, alongside the quantities introduced before,

we would have n ∈ N as the sample index; N ∈ N as the total number of discrete samples

obtained and k ∈ R≥0 as the local frequency of our discrete wave, in cycles per the total

number of samples N .

The relative, local frequency k of the discrete representation, which denotes how

many cycles the discrete signal went through in its total N samples, is related to the

absolute frequency f , in Hz, of the continuous signal via the Equation k = N
fs

f while the

absolute time in the continuous case can be obtained from the sample number n of the

discrete signal via n = tfs. We are now in a position to conceptually use the continuous

63

or discrete version of a wave, having pointed the way in which they are related.

3.3 A GEOMETRIC APPROACH TO ENVELOPE ESTIMATION

In this section, we address the difficulties exposed in Section 2.2, by formulat-

ing a general envelope detection algorithm that uses intrinsic characteristics of a signal

to estimate its envelope, completely automating this process and thus eliminating the

necessity of parameter tuning. The contents of this section were published, with some

modifications, in Tarjano et al. (2022b).

The method draws inspiration from geometric concepts: the Individual samples

comprising the discrete signal are mapped to a set of points in the Cartesian plane, where

a new measure of discrete curvature is used to identify the samples that are part of the

envelope. Due to its geometric nature, the method can optionally generate the superior

and inferior envelopes, or frontiers, of a given wave.

As will be seen in Section 5.1.2, the algorithm compares favorably with classic

envelope detection techniques based on smoothing, filtering, and the Hilbert transform,

besides being physically plausible, as proved in Section 3.3.6.

We provide visualizations of the envelope extracted for various real-world signals

with diverse characteristics, such as voice — spoken and sung — and pitched and un-

pitched musical instruments, and discuss some approaches to objectively assess the qual-

ity of the obtained envelopes. An optimized implementation is available via the Python

Package Index (PyPI), while interactive visualizations and source code are available from

the accompanying GitHub repository (Tarjano, 2020).

The Python module implementing the algorithm can be installed with the com-

mand “pip install signal-envelope”. Those working under Windows 64-bit machines can

benefit from a specialized dynamic library implemented in C++, automatically used within

the module, when applicable. This library can also be obtained separately via the repos-

itory’s release section.

3.3.1 Formalizing the problem of envelope detection

In general, the problem of envelope detection can be interpreted as the task of,

given a continuous wave w(t), decomposing it in two waves e(t) and c(t), such that

w(t) = e(t)c(t) (Turner et al., 2011).

e(t) represents the slow varying part of the wave, also known as the (temporal)

envelope, modulator component, or amplitude modulation (AM) of w(t), while c(t) models

64

its fast-varying part, called throughout the literature as its (temporal) fine structure,

carrier wave, or frequency modulation (FM).

In the case of broadband signals, the problem of envelope detection of an arbitrary

wave is ill-posed, in the sense that an infinite number of pairs of e(t) and c(t) can result

in the same w(t) (Turner et al., 2011; Loughlin et al., 1996).

This work addresses this problem by assuming c(t) to be normalized between

{−1, 1} such that |max(c(t))| = 1. This assumption does not cause any loss of gen-

erality, since, given an arbitrary c(t), we can obtain its normalization by dividing the

function by its absolute global maximum, that is, ĉ(t) = c(t)/ max(|c(t)|), provided that

max(|c(t)|) 6= 0.

In this work we are concerned with the discrete version of the envelope detection

problem, that is, given a finite discrete wave represented by the vector w ∈ RN , obtaining

the temporal envelope e ∈ RN of w.

The continuous definitions can be translated to this discrete scenario assuming that

the discrete quantities arise from observing the continuous ones at regular time intervals,

for a finite period of time. In that case, as noted in Section 3.2, the equality n = tfs can

be used to link both settings, where n is the sample index of the discrete signal, t stands

for the time in seconds, and fs is the sampling rate, or the number of observations of the

continuous signal made in one second. We can thus define:

Given:

w = (w0, w1, · · · , wN−1), w ∈ RN

We define:

e, c ∈ RN

e , (e0, e1, · · · , eN−1), en ≥ 0 ∀ n, 0 ≤ n ≤ N − 1

c , (c0, c1, · · · , cN−1), |cn| ≤ 1 ∀ n, 0 ≤ n ≤ N − 1, |max(c)| = 1

Such as:

w = e� c ∴ wn = encn ∀ n, 0 ≤ n ≤ N − 1.

(14)

The � operator in Equation 14 stands for the Hadamard product, and denotes

elementwise multiplication of two vectors. Figure 10 provides an example of the vectors

just defined: w is obtained by elementwise multiplication between the carrier wave c and

the envelope e.

65

Equation 14 connects the three vectors e, w, and c in the sense that each one can

be derived from the other two. In most real-world scenarios, however, only the original

signal w is known, and the envelope e is to be retrieved without a priori knowledge of the

carrier wave c.

0 20 40 60 80 100

−1

0

1

Local Extrema

A
m

pl
itu

de

Figure 10: Example of a discrete wave w arising from the elementwise multiplication
of an envelope e and a carrier c, both previously known. The local extrema of w are
highlighted with a circle.

In this context, Figure 10 helps to illustrate a key concept: only at some local

extrema the envelope can be inferred without prior knowledge of the underlying carrier.

Consider the point wn = cnen, with cn as a local maximum of c, and assume

cn, en > 0. A point close to wn can be written as wn + ∆w = (cn−∆c)(en + ∆e). We can

assume ∆e ≈ 0, since the rate of change of the envelope is considerably smaller than that

of the carrier. Making ∆c > 0 guarantees the assumption that cn is a local maximum.

Expanding this equation gives wn + ∆w = −∆cen + cnen, where the term cnen is

equal to wn and can be canceled. Since ∆c, en > 0, we conclude that ∆w < 0, and wn

must be a local maximum of w.

Hence, the local extrema of the carrier wave c and the original signal w coincide.

Some of those local extrema are also global extrema and in those the absolute value of

the carrier wave, by definition, is 1, and we have that wn = en, meaning that, at those

points, the envelope is equal to the instantaneous amplitude of the signal.

This realization that the envelope coincides with the instantaneous amplitude of

66

the signal only at some of the signal’s local extrema is important, as it can be used to

generate a simplified representation of the signal, making the algorithm more efficient.

Note that, in Figure 10, the carrier, the original signal, and even the envelope are

representations of similar entities: signals, in the same coordinate system. This is in line

with the work of Caetano et al. (2011), Turner et al. (2011), and Richard Lyons (2017),

but in contrast with some representations found in the literature of amplitude modulation

(e.g. Loughlin et al., 1996), where the FM and AM of a signal are represented in different

coordinate systems: frequency versus time and amplitude versus time, respectively.

3.3.2 Simplified representation of a signal for envelope detection

In order to introduce this representation, it is appropriate to define the term pulse

as it will be used in the present work: each time the value of wn changes sign, that is,

every time the instantaneous amplitude of the discrete wave w crosses the horizontal

axis, the beginning of a pulse is defined, with the next crossing defining its end. This

interpretation of a pulse is in line with the one presented in Division et al. (1996), where

a pulse is defined as a rapid change in the amplitude of a signal, followed by a fast return

to the baseline value; zero, in our case.

From Figure 10 and the discussion in Section 3.3.1, we can see that, if the envelope

touches a pulse, it must pass through the maximum point of a positive pulse or the

minimum point of a negative pulse, making those our main points of interest. We can

then proceed, for the rest of the method, considering only those points, to a considerable

computational economy.

For this reason, we define P as the set of the points {P0, P1, · · · , PM−1}, each point

associated with a pulse, where Pi = (ni, |wni
|), that is, |wni

|, the absolute value of the

extremum of each pulse, becomes the ordinate of each point and ni, its original sample

index, becomes the abscissa. This is illustrated in Figure 11.

While the exact relationship between N , the number of samples of the original

signal, and M , the cardinality of the set P, is dependent on factors such as the frequency

and sampling rate of the original wave, the inequality M ≤ N holds for all discrete signals.

In practice, M � N for most real-world signals.

67

0 20 40 60 80

−1.5

−1

−0.5

0

0.5

1

1.5

Signal Pulses Local Extrema
A

m
pl

itu
de

Figure 11: Example of a discrete wave w divided into pulses, of which the extrema are
highlighted with a circle. P is the set of the points Pi = (ni, |wni

|) representing the
absolute value of those extrema.

3.3.3 Mapping to the Cartesian coordinate system

The points in P are not fit for geometric interpretation yet, since the abscissa and

ordinate of their orthogonal coordinate system have different units: in the vertical axis,

we have a unit related to the instantaneous amplitude of the wave, while in the horizontal

axis we have the index at which each extremum occurs, ultimately a time-related unit.

We can think of these points as lying in a vector space with a non-standard,

orthogonal basis vector b = {bx, by} with bx = (∆n, 0), by = (0, ∆a), where ∆a is a

pseudo unit related to the amplitude of a sample and ∆n a pseudo unit related to the

sample index. The exact magnitude of those pseudo units is not important here.

We are interested in representing the points in P in the Cartesian coordinate sys-

tem, and for that we need a transformation that allows those points to be described in

the standard basis s = {sx, sy} = {(1, 0), (0, 1)} of this vector space.

The general idea is to represent each coordinate as a fraction of the average of all

coordinates in the same direction. To achieve that, we divide the ordinate of each point

by the average of all ordinates, effectively canceling the unit of the vertical components

of the points. If we were to proceed similarly regarding the horizontal components, the

direct numerical link between P and w would be lost.

68

It is best to leave the abscissas intact and multiply the now unitless vertical coor-

dinates of each point by the average of the difference between the abscissa of a point and

the abscissa of the immediately posterior point.

In this way, we can consider both axes as having unit ∆n. By dividing both of

them by ∆n, we obtain the effect of representing the points on the standard basis. The

relationship is preserved, since the abscissas of the points thus transformed are numerically

equivalent to the indices n of w, making it straightforward to recover the envelope points

in the original coordinate system.

Considering Pb a point of the set P represented in the original coordinate system

and Ps the same point represented in the Cartesian coordinate system, we formalize this

transformation in Equation 15:

P = (x, y)

β =

(
nM−1−n0

M−1

)
(∑M−1

i=0 |wi|
M

)
Pb = x bx + y by = x(∆n, 0) + y(0, ∆a) = (x∆n, y∆a)

Ps = x sx + β y sy = x(1, 0) + βy(0, 1) = (x, βy)

∀ P ∈ P

(15)

The effect of this transformation can be seen in the points represented in Figure

12. Despite the two bases being different, the horizontal relationship is preserved, since

one unit along the horizontal axis in Cartesian coordinates corresponds to one unit of the

sample index n in the original coordinate system.

69

3 8 12 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93
0
2

3 8 12 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93
0
2
4
6
8

10

A
m

pl
itu

de
Original coordinates

Cartesian coordinates

Figure 12: The set P of points, in both the original (top) and Cartesian (bottom) coor-
dinate systems, shown in scale. Correspondence is maintained between both horizontal
axes, in order to simplify the process of retrieving the algorithm results.

3.3.4 Discrete curvature estimation

Having established a transformation from the original space of the two-dimensional

representation of a discrete wave to the Cartesian coordinate system, we are now able to

apply the geometric concept of the shape of a set of points.

Algorithms such as the convex hull and the alpha shapes solve this problem by

discriminating which points of a set are part of its frontier.

A formal definition of alpha shapes is given in H. Edelsbrunner et al. (1983). In the

context of this work, however, gaining intuition about the algorithm is more important.

For that the explanation presented in Herbert Edelsbrunner et al. (1994) can be more

insightful.

The explanation, translated to our context, invites one to think of the plane where

the points in the set P are represented as a soft material, such as Styrofoam. The points

themselves are made of a harder material, such as rock, and occupy a fixed position in

this plane. The alpha shapes algorithm can be seen as carving this plane from the outside

of those points with a circular tool of fixed radius α. At the end of the process, the

remaining Styrofoam that could not be removed due to the impeding rocks is the alpha

shape of this set of points.

70

Alternatively, one can picture a circle of fixed radius being rolled above the points

in the set P, marking the points it touches as part of the envelope. A video illustrating

this is available at envelope.netlify.app.

To employ an alpha shape inspired algorithm, however, the radius r of such a circle

must be estimated, and for that, a measure of discrete curvature is needed.

Discrete curvature estimation is an important task in image processing (Fleis-

chmann et al., 2010), for which no default algorithm exists.

The two general approaches are the derivation of direct methods that use charac-

teristics of the discrete curve to calculate the curvature, or the use of the curvature of a

smooth, continuous curve fitted to the original discrete curve (Coeurjolly et al., 2001).

Since we are dealing with a potentially large set of points, it is important for this measure

to act locally, to assure O(N) complexity; this is generally not the case for approaches

involving curve fitting.

Concerning direct methods, Carroll et al. (2014) presents three such definitions,

based on the approximation of a circle by an inscribed, centered, and circumscribed

polygon. In the context of three-dimensional meshes, Libor Váša et al. (2016) evaluate a

range of existing estimators, from a multivariate point of view.

Those approaches define the discrete curvature in relation to the vertices of a

discrete curve (or mesh, in the three-dimensional case). Since we are interested in the

change of direction — what the term curvature ultimately means — between two adjacent

points, a definition of discrete curvature over the edges of a discrete curve would be

preferable.

Thus, the set V of the vectors from each point of P to the next, formalized in

Equation 16 and illustrated in Figure 13, will be used to estimate the average curvature

of P: we will calculate the equivalent circle for each vector, and average the values obtained

to infer the curvature of the set.

V = {v0, v1, · · · , vM−2} where vi = Pi+1 − Pi ∀ 0 ≤ i ≤M − 2 (16)

envelope.netlify.app

71

0 20 40 60 80 100

0

2

4

6

8

Figure 13: The set P of points and the set V of vectors between two adjacent points of
P, in the Cartesian coordinate system.

3.3.4.1 The Equivalent Circle Approach to discrete curvature estimation

We thus proceed to define a discrete curvature measure over the edges of a discrete

curve. To that end, we are going to apply the definition of smooth curvature as the rate of

change of the unit tangent to a curve. This definition is convenient, since it is equivalent

to that of the osculating circle (L. Váša et al., 2016), the value we are interested in finding.

One of those edges, in the form of the vector vi ∈ V, is singled out in Figure

14, and represents the envelope’s displacement from the extrema Pi = (xi, yi) to Pi+1 =
(xi+1, yi+1).

72

x

y

ri

û0

û1

θi

θi

θi

Pi

Pi+1

vi,x

vi,y
vi

0

vi,x
vi,y

vi,y

Figure 14: The unit vector tangent to the circle changes from the horizontal direction in
û0 to an inclination of θi in û1, θi being the angle that vector vi makes with the horizontal
direction.

We assume that, near vector vi, the envelope defines a vertical displacement vi,y =
yi+1 − yi and a horizontal displacement vi,x = xi+1 − xi. Since we do not yet know which

points of P are part of the envelope, we cannot be certain that the envelope passes through

Pi−1 before reaching Pi, or even if it ever reaches Pi.

Nevertheless, assuming it passes through Pi, and is limited to the displacements

just observed, the envelope might have passed anywhere in the line segment from points

(xi− (xi+1−xi), yi− (yi+1−yi)) to (xi− (xi+1−xi), yi +(yi+1−yi)), the bold line segment

before vi in Figure 14, before reaching Pi.

Generalizing those observations for all vectors vi ∈ V, we can consider that, on av-

erage, the envelope approaches Pi horizontally and smoothly changes from the horizontal

direction to the direction of the vector vi.

The rationale then is to find, for each vector vi, the radius ri of the equivalent

circle whose unit tangent performs the same change in direction, in the same horizontal

distance. The average curvature of P will be obtained by the average of all radii ri.

From Figure 14 one can see that ri = vi,x/ sin(θi), where vi,x is the component of

vi in the horizontal direction; observing vi in the figure we see that sin(θi) = vi,y/|vi| =

73

vi,y/
√

v2
i,x + v2

i,y. Joining both equations, we can write Equation 17:

ri =
vi,x

√
v2

i,x + v2
i,y

vi,y

. (17)

The radius ri of the circle equivalent to each vi is thus defined in Equation 17.

This equation has the desirable property vi,y → 0 =⇒ ri → ∞, that is, the radius

tends to infinity when there is no vertical displacement, effectively turning the circle into

a line. The radius is also directly proportional to vi,x, becoming larger in proportion to

the horizontal distance between two adjacent points.

For implementation purposes, however, the formulation in Equation 17 poses a

problem, as a zero could make its way into the denominator of a fraction; in the actual

algorithm, the quantity calculated for each vector is the curvature itself, that is, the

inverse of each radius ri. In this way, the problem is avoided, since vi,x is guaranteed to

be greater than zero. The average of the curvatures is then inverted in order to obtain

the average radius r, as illustrated in Equation 18.

r =


M−2∑
i=0

(
vi,y

vi,x

√
v2

i,x+v2
i,y

)
M − 2


−1

(18)

3.3.5 Identifying the envelope

We need to construct an algorithm, using the radius just obtained, to identify

the points that belong to the envelope. Generally, alpha shape algorithms resort to the

construction of the Delaunay triangulation of the set of points, which is later filtered to

contain only the outer edges. Using Equation 19, we can find the edges directly.

Let xo, yo ∈ R, yo ≥ 0 be the coordinates of the center of a circle with radius r,

that can be placed anywhere in the upper half of the coordinate system, and Pa, Pb ∈ P

be two points of the set P.

For all circles of center (xo, yo) and radius r that can be constructed to pass through

any two points of P, that is, all circles such that (Pa,x−xo)2 +(Pa,y−yo)2 = (Pb,x−xo)2 +
(Pb,y − yo)2 = r2, the edge from Pa to Pb will be part of the envelope, and the points Pa

and Pb will be part of the set E of the points belonging to the envelope, if and only if

exists one such circle defining a disc that does not contain any other point of P. Equation

74

19 summarizes this.

Given:

Pa, Pb, Pc ∈ P, Pa 6= Pc, Pb 6= Pc and xo, yo ∈ R, yo ≥ 0

Such as:

(Pa,x − xo)2 + (Pa,y − yo)2 = (Pb,x − xo)2 + (Pb,y − yo)2 = r2

We have that:

Pa, Pb ∈ E↔ (Pc,x − xo)2 + (Pc,y − yo)2 > r2 ∀ Pc ∈ P− {Pa, Pb}

(19)

Algorithm 1 adopts a more straightforward approach, since our points have a

sequential structure, and starts searching for a new edge belonging to the envelope from

the rightmost point of the last edge identified as part of the envelope.

The algorithm follows directly from the definition in Equation 19, after noting that

the first and last points of P will always be part of the envelope: since Pa can be equal to

Pb, it is always possible to construct a circle containing the first, leftmost point of P, by

placing the center of the circle at (P0,x − r, P0,y). The disc defined by this circle cannot

contain any other point of P, since all other points have abscissas greater than P0,x. The

same is true for PM−1, the last and rightmost point of P.

From P0, our first pivot point, we construct circles passing through P1, P2, · · · , Pd

until a circle that does not contain any point is found; Pd then becomes the new pivot

point and is included in E, and this process continues until PM−1 is reached.

The procedure is formalized in Algorithm 1. We do not provide similar algorithmic

descriptions of the preceding steps since the Python implementation available at github.

com/tesserato/envelope/blob/master/envelopePythonSource.py can easily serve as

pseudocode.

github.com/tesserato/envelope/blob/master/envelopePythonSource.py
github.com/tesserato/envelope/blob/master/envelopePythonSource.py

75

Algorithm 1 Retrieve Envelope
1: Input:
2: P = {P0, P1, · · · , PM−1}
3: r ∈ R, r > 0
4: Define:
5: circle . function, returns the center of a circle of a given radius passing through two

points
6: distance . function, returns the Euclidean distance between two points
7: Pc = point
8: empty = boolean
9: procedure RetrieveEnvelope(P, r)

10: E← {P0}
11: id1← 0
12: id2← 1
13: while id2 < M do
14: Pc ← circle(r, Pid1, Pid2)
15: empty← True
16: for i = id2 + 1, i < M, i+ = 1 do
17: if distance(Pc, Pi) < r then
18: empty← False
19: id2← id2 + 1
20: break
21: end if
22: end for
23: if empty then
24: E← E ∪ {Pid2}
25: id1← id2
26: id2← id2 + 1
27: end if
28: end while
29: return E
30: end procedure

The set E obtained by the Algorithm 1 is a subset of P, and thus also a set of points

in the Euclidean space. Recall from Section 3.3.3 that the coordinates of these points are

currently scaled, in relation to the original signal, by the transformation described in

Equation 15. We could invert the transformation, but since we were careful to maintain

a link between the horizontal coordinates in both coordinate systems, we can simply

consider the horizontal coordinates of P as the indices of the samples of the original

discrete signal, and retrieve the envelope at each point directly.

The most straightforward way to transform the points of the set E into the vector

e ∈ RN is via linear interpolation, the approach used in this work. It is worth noting,

however, that many other procedures are available, both for the interpolation and the

76

smooth approximation of points. Depending on the intended use of the envelope, k-curves

interpolation (Yan et al., 2017) is a specially interesting approach, since it guarantees that

the maximum curvature occurs at the interpolated points.

3.3.6 Theoretical guarantees

In an effort to formalize the assessment of the quality of the amplitude and fre-

quency modulations of a signal, Loughlin et al. (1996) proposed some theoretical condi-

tions necessary, but not sufficient, to ensure the physical plausibility of an envelope.

We comment below on how those conditions translate to the discrete setting and

subsequently prove that the algorithm proposed satisfies all the four conditions presented.

The first one states that, if a signal is bounded in magnitude, its envelope should

also be bounded. Intuitively, it is easy to see that the algorithm complies with this

requirement, as the envelope is composed of selected samples from the original signal

itself.

More formally, we have the set P of the absolute values of the local extrema of the

original signal w = (w0, w1, · · · , wN−1) that contains, by definition, the global extrema of

w. The set E of the points that belong to the envelope is a subset of P. We can thus

write Equation 20, with P represented in the original coordinate system:

P = {P0, P1, · · · , PM−1} where Pi = (ni, |wni
|) ∀ 0 ≤ i ≤M − 1

E ⊂ P =⇒ max(E) ≤ max(P) = max(|w0|, |w1|, · · · , |wN−1|)
(20)

If the amplitude of the original signal is bounded, that is max(|w0|, |w1|, · · · , |wN−1|) =
b ∈ R, not only the amplitude of the envelope is bounded, as required, but is guaranteed

to have the same bound b.

The second statement dictates that if a signal has a finite frequency range, that

frequency range must not be exceeded by its carrier wave. To see that this condition

holds for the proposed method, consider a discrete signal w = (w0, w1, · · · , wN−1), where

all the absolute values of its local extrema are greater than one.

This requirement does not imply loss of generality since, for an arbitrary signal, we

can assure this condition by dividing all samples by the value of the minimum absolute

local extrema.

The relation min(E) ≥ 1 thus holds, since E ⊂ P. Provided that one uses a method

that preserves the original bounds when interpolating the points in E, such as linear inter-

77

polation, we can be sure that all the points in the envelope vector e = (e0, e1, · · · , eN−1)
are also greater than one.

Recalling Equation 14, where the relation between the original signal, the carrier

and the envelope was defined as w = e � c, we can write the magnitude mw(k) of

an arbitrary frequency of the original signal and, likewise, the magnitude mc(k) of an

arbitrary frequency of the carrier, in terms of the DFT, as in Equation 21:

mw(k) =
N−1∑
n=0

√
(wn cos(2πkn/N))2 + (wn sin(2πkn/N))2

mc(k) =
N−1∑
n=0

√(
wn

en

cos(2πkn/N)
)2

+
(

wn

en

sin(2πkn/N)
)2

.

(21)

For any given frequency k, both mw(k) and mc(k) are nonnegative. Also, since

en ≥ 1 ∀ n, 0 ≤ n ≤ N − 1, we establish that 0 ≤ mc(k) ≤ mw(k) ∀ k, which is a more

restrictive condition than the original. If w has a finite frequency range, the magnitude

of the frequencies outside that range are zero, as are those of the carrier c.

The third condition states that a physically plausible algorithm should, for a signal

w of constant amplitude and constant frequency — that can thus be defined as a cos(κn+
φ) with a ∈ R, a > 0 and κ ∈ N — generate a constant envelope e of magnitude a and

a carrier wave c of the form cos(κn + φ). An example of such behavior can be observed

in Section 5.1.2, Figure 48, where the envelope of a simple sinusoid is shown.

To see that this is always the case, note that all the extrema of a sinusoid are

of the form a(±1) and Pi = (ni, |a(±1)|) = (ni, a) ∀ Pi ∈ P in the original coordinate

system, provided that the sampling frequency is a multiple of the sinusoid’s frequency.

In practice, given a standard sampling rate of 44100 Hz, all extrema can be considered

approximately equal to a throughout the audible spectra. As E ⊂ P, we have that the

envelope e = (a, a, · · · , a) and is, thus, constant. Likewise, since w = e � c, we have

cn = a cos(κn + φ)/a = cos(κn + φ) ∀ n, 0 ≤ n ≤ N − 1.

The fourth and last condition states that if a wave is multiplied by a constant,

its envelope should also be multiplied by the same constant. Recall from Section 3.3.3

that, before the extraction of the envelope, the original points undergo a transformation

to the Cartesian coordinate system. After the extraction, the inverse operation can be

performed on the points of the envelope.

Consider a discrete signal w = (w0, w1, · · · , wN−1) and the set P of its absolute

extrema. Represented in the Cartesian coordinate system, Pi = (ni, β|wni
|), where β is

78

obtained from Equation 15.

Given a constant α ∈ R, α > 0, we can define the scaled signal as w′ = (αw0, αw1, · · · , αwN−1).
Observing, from Equation 15, that α can be factored out of denominator of the summa-

tion, we have β′ = β/α and the new set P′ = {P ′
0, P ′

1, · · · , P ′
M−1}, with P ′

i = (ni,
β
α
|αwni

|),
is equal to the original set P.

This guarantees that the same subset of points E will be identified as part of the

envelope in both cases. In their respective original basis system, applying the inverse

transformation, those points are Pi = (ni,
β
β
|wni
|) = (ni, |wni

|) ∀ P ∈ E, for the original

signal, and P ′
i = (ni,

α
β

β
α
|αwni

|) = (ni, |αwni
|) ∀ P ′ ∈ E′ for the scaled signal.

3.3.7 Extensions

This section comments briefly on some characteristics and extensions of the en-

velope extraction algorithm, in order to suggest possible applications beyond envelope

identification. One of the less obvious is, perhaps, its use in the segmentation of a signal

into pseudo cycles, a theme deeply explored in Section 3.4.

3.3.7.1 Superior and inferior envelopes

In practice, it is not uncommon for a discrete wave, especially in the case of sound,

to present somewhat different superior and inferior contours. In those cases, the algorithm

can be easily modified to generate two independent envelopes, that can be called the

superior and inferior frontiers of a signal.

If P, defined in Section 3.3.2, is divided into P+, the set of the local maxima of

the original signal, and P−, the set of its local minima, one can independently apply the

remaining steps of the algorithm in those two sets, arriving at a superior and an inferior

frontier, respectively.

Figure 15 illustrates these frontiers for six diverse discrete sound waves, as well

as an in-detail view of the highlighted segment for each signal. All waves are records

of physical sounds, chosen to represent the applicability of the algorithm in a real-world

scenario. The implementation available at the PyPI repository provides an option to

extract the frontiers.

79

0 50k 100k 150k 200k
−1

−0.5

0

0.5

1

35k 35.5k 36k 36.5k
−0.2

0

0.2

0 5k 10k 15k 20k 25k 30k 35k 40k 45k

−0.5

0

0.5

1 20.6k 20.8k 21k 21.2k
−0.5

0
0.5

1

0 5k 10k 15k 20k 25k 30k 35k 40k

−0.5

0

0.5

1

14k 14.5k 15k−0.1
−0.05

0
0.05
0.1

0 20k 40k 60k 80k
−1

−0.5

0

0.5 18.5k 19k 19.5k 20k
−0.5

0

0.5

0 20k 40k 60k 80k 100k 120k 140k 160k
−1

−0.5

0

0.5
32k 34k 36k

−0.5
0

0.5

0 5k 10k 15k 20k 25k 30k 35k
−1

−0.5

0

0.5

1 7500 8000 8500

0

0.5

Signal Frontiers

Piano
Singing Voice

Drum Kit Tom
Guitar Bend

Trumpet Spoken Voice

Figure 15: Superior and inferior frontiers of six discrete signals, extracted by the proposed
algorithm. For each wave, the region highlighted in black is shown in detail. The horizon-
tal axis of each subplot represents the sample index n, while the vertical axis represents
the normalized amplitude.

The frontiers were satisfactorily detected in the case of harmonic and inharmonic

sounds, and are robust in relation to the number of samples and the frequencies of the

waves. It is worth noting that the positive and negative frontiers are generally smoother

than the unified envelope presented in Figures 43, 44 and 45, and conforms better to the

contours of the underlying discrete signal.

3.3.7.2 Simplified spectral representation

In general, the temporal envelope adds complexity to the spectral representation of

a wave (Tarjano et al., 2019). As demonstrated in Section 5.1, the carrier wave obtained

with the proposed envelope detection algorithm is guaranteed to have a narrower frequency

range than the original signal.

Using the carrier wave in place of the original signal would simplify algorithms

based on spectral analysis, without considerable drawbacks, since the envelope is fully

known and can be applied back to the signal after eventual modifications.

80

Figure 16 shows the frequency-domain power spectrum for the wave and the car-

rier presented in Figure 10. For the carrier, the power spectrum presents two nonzero

values, while the power spectrum for the wave, composed of the carrier modulated by the

envelope, is more complex.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

Frequency

A
m

pl
itu

de

Figure 16: Fourier power spectrum for the wave and carrier shown in Figure 10.

Figure 17 shows part of the power spectra for both the original wave and the carrier

obtained by the present algorithm, for the guitar bend sound in Figure 45, for frequencies

around its fundamental frequency. Two prominent frequencies can be seen, corresponding

to the initial and final notes of the bend. In the carrier, the other frequencies, introduced

by the envelope, are less pronounced.

81

820 840 860 880 900
0

0.05

0.1

0.15

0.2

0.25

Frequency

A
m

pl
itu

de

Figure 17: Fourier power spectrum for wave and carrier of the sound of a guitar bend
shown in Figure 45.

3.3.7.3 Approximated location of pseudo cycles

The algorithm developed for envelope detection naturally divides a signal into its

pseudo cycles, pinpointing them in the time domain. Figure 18 exemplifies this, for the

sound of an alto singer singing a sustained note seen in Figure 44.

The vertical lines mark the indices of the samples that belong to the positive

frontier of the original signal. The section between each vertical line can be seen as a

pseudo cycle of the wave. Although two local maxima exist in each pseudo cycle, only

the largest was marked by the algorithm.

82

21.6k 21.8k 22k 22.2k

−0.5

0

0.5

1
Signal Indices of the positive frontier

A
m

pl
itu

de

Figure 18: Part of the digital wave illustrated in Figure 44, with vertical lines at the
indices of the samples that belong to the positive frontier.

Therefore, using those indices, one can split a discrete wave into its pseudo cycles.

One application of that is illustrated in Figure 19: it shows the superposition of the

extracted waveforms, after being normalized by length, and their average.

This same average is shown shifted by one average wavelength, to exemplify that

approximate C0 and C1 continuity is achieved; in other words, in the point where they

join, the curves share a common point (C0 continuity) and are smooth around that point

(C1 continuity). This can be seen as the average waveform of the original discrete signal,

and can be used, along with the description of the signal’s envelope, to generate an

alternative representation of the wave, useful, for example, for compression purposes; this

idea will be further explored, albeit using an alternative approach, in Section 5.2.1, when

a lossy compression codec is introduced.

83

0 50 100 150

−0.5

0

0.5

1

Normalized waveforms Average waveform Average waveform (shifted)
A

m
pl

itu
de

Figure 19: Waveform of each pseudo cycle of the wave illustrated in Figure 44, interpolated
to the same length and superposed. The average in its original position, and shifted, is
also shown.

3.4 SEGMENTING QUASI-PERIODIC SIGNALS INTO PSEUDO CYCLES

The contents of this section were published, with some modifications, in Tarjano

et al. (2022a). Consider a sequence s = (s1, s2, · · · , sN) in RN , representing a finite

discrete signal obtained by sampling part of a quasi-periodic continuous wave at equal

time intervals.

From the predominant discrete frequency kpred ∈ N of the discrete signal, obtained

from the equation kpred = argmax(DFT(s)), where argmax is a function that returns the

index of the maximum value of a sequence, we can obtain an initial approximation T0 ∈ R

of the period of the signal from the equation T0 = N/kpred.

This approximation, however, potentially underestimates the length of pseudo cy-

cles with complex waveforms involving various zero crossings, introducing in the algorithm

a tendency to divide the original signal into non-homogeneous segments.

An updated approximate period T can be obtained by T = argmax(rss(dT0/2e),
rss(dT0/2e+ 1), · · · , rss(lmaxT0)), where rss(l) is the autocorrelation of s with itself at lag

l ∈ N. lmax ∈ N, lmax ≥ 1 fixes the maximum lag, in terms of T0. In this work lmax is

set empirically to 6, reflecting the maximum complexity expected for the pseudo cycles’

waveforms, in terms of zero crossings.

84

Starting at the autocorrelation lag l = dT0/2e addresses the problem that the

autocorrelation tends to be high, regardless of the signal, for lags close to zero (Sikora

et al., 2005).

By sliding a window of size T over s, sample by sample, and performing a DFT

at each step, we can localize the behavior of the basis waveform in time, observing the

behavior of the predominant phase of each DFT.

This procedure is analogous to the sliding discrete Fourier transform (Rabiner,

1975). It is also very close to performing a circular time shift in the underlying basis

waveform, as long as this signal is reasonably harmonic; one can thus expect an approx-

imately linear behavior for the values obtained using this procedure (R. Lyons, 2003).

Since those values are bound between −π and π, this linearity generates a succession of

approximately parallel diagonal lines, as seen in Figure 20.

9.5k 10k 10.5k 11k 11.5k 12k

0

Signal Phase Boundaries

Va
lu

e

Figure 20: Signal and predominant phases for part of the soprano A signal shown in
Table 6. Where the phase reaches π outside the grayed-out area representing the jumps,
a boundary is defined.

Any horizontal line, intercepting each of those parallel lines at the same value,

would define a set of potential boundaries of the underlying signal. In the actual imple-

mentation, presented in Algorithm 2, this line is set at π for convenience.

Since the approximate period T of the signal is known, each time a boundary is

found, the algorithm can jump forward a fraction d of T , in the interest of efficiency.

85

Those jumps are represented in Figure 20 as the grayed-out areas in the plot.

The location of the boundaries, in the form of indices of the original signal, is stored

in the vector of positive integers n and is the output of Algorithm 2. A representation of

Algorithm 2 in the form of a flow diagram can be seen at the root of the repository prepared

for the algorithm (Tarjano, 2021), under the name SegmentationAlgorithm.pdf. A

Python implementation can be found at github.com/tesserato/compression/blob/

main/000PythonImplementation.py.

If we let P ∈ N, P > 0 be the number of pseudo cycles in which the original signal

s is divided, n can be properly defined as n = (n1, n2, · · · , nP +1), n ∈ NP +1. This is so

because we do not consider the region between the beginning of the signal and the first

boundary n1, or between the last boundary nP +1 and the end of the signal as pseudo

cycles since they are, in general, incomplete pseudo cycles.

3.4.0.1 Deriving an envelope from the results of the segmentation algorithm

As noted in Section 2.2, envelopes are important components in the characteriza-

tion of signals (Tarjano et al., 2022b), being largely responsible for the intelligibility (Qi

et al., 2017) and emotion (Zhu et al., 2018) of the spoken voice, for example. Nevertheless,

the identification and even the definition of a temporal envelope, in the general case of

broadband signals, is still an open question (Jia et al., 2019).

While an envelope detection algorithm was already introduced in Section 3.3.5, the

segmentation procedure illustrated in Algorithm 2 can serve as a starting point for a more

accurate definition of temporal envelopes, and for a novel algorithm to extract them, more

fitting in the case of harmonic signals. Even for signals with very little harmonic content,

as a crash cymbal, the waveform of the reconstructed signal, obtained as presented in

Section 3.4.1, is very close to that of the original signal, as Figure 21 illustrates.

github.com/tesserato/compression/blob/main/000PythonImplementation.py
github.com/tesserato/compression/blob/main/000PythonImplementation.py

86

Algorithm 2 Segment Signal
1: Input:
2: s ∈ RN , s = (s1, s2, · · · , sN) . original discrete signal representation
3: lmax ∈ R, lmax ≥ 1 . max. expected complexity of basis waveform
4: d ∈ R, 0 < d < 1 . fraction of T to be skipped once a frontier is found
5: t ∈ R,−π ≤ t ≤ π . threshold above which the
6: rss(l), l ∈ N . given a delay (or lag) l, returns the autocorrelation of the signal s
7: procedure segment(s, lmax, t, d)
8: kpred ← argmax(DFT(s))
9: T0 ← N/kpred

10: T ← dT0/2e+ argmax(rss(dT0/2e), rss(dT0/2e+ 1), · · · , rss(lmaxT0))
11: n← {}
12: n← 0
13: φ′ ← 0
14: n′ ← 0
15: insideThreshold← False
16: while n + T < N do
17: φ← arg(max(DFTT (sn, sn+1, · · · , sn+T)))
18: if φ > t then
19: insideThreshold← True
20: if φ > φ′ then
21: φ′ ← φ
22: n′ ← n
23: end if
24: else
25: if insideThreshold then
26: φ′ ← 0
27: n← n′ + ddT e
28: n← n ∪ {n′}
29: end if
30: insideThreshold← False
31: end if
32: n← n + 1
33: end while
34: return n . indices of s that represent the boundaries between pseudo cycles
35: end procedure

87

−1
−0.5

0
0.5

1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1

−0.5
0

0.5
1

0 10k 20k 30k 40k 50k 60k 70k
−1

−0.5
0

0.5
1

Crash cymbal
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Original

HC

MP3

AAC

Opus

Figure 21: Waveform of the original signal and the 4 compressed signals. HC is the
compression schema presented in Section 3.3.2. The traditional codecs are operating
at extreme compression settings fully described in Section 5.2.2.1. The cymbal, being
predominantly inharmonic, is used to illustrate that the algorithm exhibits reasonable
performance even in worst-case scenario situations.

From the output of the segmentation Algorithm 2 we can straightforwardly obtain

two sets of points: the set F>0 of the points with the maximum amplitude of each pseudo

cycle as their ordinates and the index of the sample in which it occurs as their abscissa

and, analogously, the set F<0 of the points with the index and the value of the samples

with minimum amplitude in each pseudo cycle.

Those sets can be seen in Figure 22, for the soprano A signal, compared with the

envelope obtained by the low pass filtered result of the Hilbert transform, one of the most

common algorithms for envelope extraction.

88

0 20k 40k 60k 80k 100k

−0.5

0

0.5

1

Original Signal Hilbert envelope
A

m
pl

itu
de

Figure 22: Positive and negative frontiers of the original soprano A signal, obtained using
the segmentation presented in Algorithm 2, compared to the envelope obtained using the
Hilbert transform.

Those sets can be transformed into proper envelopes by interpolation. Examples

for all signals, using linear interpolation, are available at the repository prepared for the

segmentation algorithm (Tarjano, 2021).

3.4.1 Representing a signal as an evolving waveform

Segmented into P pseudo cycles, the sequence s = (s1, s2, · · · , sN), introduced

in Section 3.4 to represent a finite discrete signal, can be interpreted as a succession of

shorter signals, or waveforms, each one representing a (pseudo) cycle of the original wave,

not unlike how a video emerges from a sequence of images.

Mathematically, the instantaneous amplitude sn of the original signal, which was

represented as a function of the sample index n of the discrete representation of the

signal, would now be represented as a function of two variables: we can define the new

representation as z(i, j), where i ∈ {1, 2, · · · , P} indicates the index of each pseudo cycle

among the P pseudo cycles in which the wave was divided, and j ∈ N is each pseudo

cycle’s sample index. This is exemplified in Figure 23.

89

Figure 23: The original Soprano A signal is shown, segmented into its pseudo cycles. In
the left subplot, the effect of the temporal envelope and the variation in pseudo cycle
lengths can be seen, in the form of a white, approximately plane area of the surface on
the left-hand side of the graph. This is so because the waveforms of the pseudo cycles
were zero-padded. Those effects were normalized in the plot on the right, to highlight the
similarity between adjacent waveforms.

In the case of perfectly periodic signals, the lengths and the waveforms of those

pseudo cycles would be identical, and the identification of a single waveform would char-

acterize the whole signal. In most real-world signals, on the other hand, the waveform

changes, often subtly, between pseudo cycles, as changes the length of each pseudo cycle.

To accommodate that, L itself must be a function of i, such that j ∈ {1, 2, · · · , Li}. In

other words, the range of the index j, that represents the indices of the instantaneous

amplitude of each pseudo cycle, is generally different for each pseudo cycle, reflecting their

different lengths.

Figure 23 illustrates, for quasi-periodic signals, how those changes can be subtle.

Both subplots show the index i of each pseudo cycle in the longest horizontal axis, repre-

senting the waveform’s evolution. In the shortest horizontal axis, from left to right, the

index j, that reflects the position inside each pseudo cycle, is shown.

On the left subplot in Figure 23, the effect of the envelope is present, as can be

seen by the differences in maximum amplitude between the waveforms of the different

pseudo cycles. The length Li of each pseudo cycle is also slightly different: this can be

seen as the white space on the right side of the graph.

90

On the right subplot, both effects were normalized. The waveforms of every pseudo

cycle were interpolated to have a length equal to the maximum length. Likewise, their

amplitude was normalized, to remove the effect of the temporal envelope. It can be seen

that, after those steps, the variation between normalized waveforms is very small.

If we assume that the basis waveform is approximately constant, as is the case for

tuned instruments and singing voice, for example, we can introduce a simplified repre-

sentation for digital waves. Let this basis waveform be defined as w = (w1, w2, · · · , wL),
where L is the average of the pseudo cycle’s lengths.

We consider, as a simplification, that this basis waveform will be modified only by

the effect of the temporal envelope modulating its amplitude and small deviations from

the predominant period modulating its length. Besides the basis waveform, then, those

quantities must be stored.

Using n, the vector of the indices of the boundaries between pseudo cycles that is

the output of Algorithm 2, one can directly obtain the length, or period, of each pseudo

cycle, by observing the distance between two successive boundaries, as formalized by

Equation 22.

t = (n2 − n1, n3 − n2, · · · , nL+1 − nL) (22)

Since 0 ≤ ni ≤ N , where N is the size of the original signal, that can be arbitrarily

large, storing the information about the length of each pseudo cycle in the form of the

values of t has a practical advantage: those values, generally much smaller than N , can

be stored in fewer bytes.

Likewise, the vector of pseudo cycles’ amplitudes can be defined as the maximum

absolute amplitude of each pseudo cycle, as in Equation 23. This definition is similar to

the definition of the frontiers in Section 3.4.1.

a = (a1, a2, · · · , aL);

ai = max(|sni
|, |sni+1|, · · · , |sni+1−1|) ∀ i; 1 ≤ i ≤ P

(23)

Lastly, the basis waveform can be obtained as the average of the normalized wave-

forms of each pseudo cycle, as defined in Equation 24. An example is shown in Figure

24.

91

w = IDFT


L∑

i=1
DFTL

(
sni

ai
,

sni+1
ai

, · · · ,
sni+1−1

ai

)
L

 (24)

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1
Normalized Waveforms Average

N
or

m
al

iz
ed

 A
m

pl
itu

de

Figure 24: The various waveforms that compose the original soprano A signal are shown
superimposed, after being scaled to the same length, and having their amplitudes nor-
malized. The average of those individual waveforms is shown in red.

From the periods t ∈ NL (see Equation 22), the amplitudes a ∈ RL
≥0 (see Equation

23) and the basis waveform w ∈ RL (see Equation 24) the original signal can be approx-

imately reconstructed. We can formalize the recreated signal as a concatenation of its

pseudo cycles, such as defined in Equation 25.

s′ = (p1, p2, · · · , pL);

pi = ai IDFTti

(
DFT(w)

)
∀ i; 1 ≤ i ≤ L

(25)

This representation guards some similarities with the technique of wavetable syn-

thesis, where a cycle of a longer signal is stored, to be read later at different speeds (Franck

et al., 2013), allowing different pitches to be derived from a single wavetable. Although

the focus of wavetable synthesis has recently shifted to sound design, the use of wavetable

synthesis for lossy compression is investigated, for example, in Maher (2005).

92

0

C
om

pr
es

se
d

si
ze

2

Figure 25: The theoretical compressed size as a function of T , the average period of the
original signal.

3.4.2 Theoretical analysis of the segmentation algorithm

Insight into the compression potential of the representation introduced in Section

3.4 can be obtained from the following approximation: the original signal has approxi-

mately N/T pseudo cycles, and the alternative representation can be seen as a vector of

approximately T +2(N/T) real numbers. Transforming the N real numbers that describe

the time domain representation of the original signal into the T + 2(N/T) numbers nec-

essary for the alternative representation results in compression if N
2 −

√
N

√
N−8

2 ≤ T ≤
N
2 +

√
N

√
N−8

2 .

As N grows, the leftmost side of this inequality tends to 2, while the rightmost

side tends to N − 2, making the limits inside which this representation is advantageous

comfortable. For sufficiently long signals, virtually every predominant period T results in

compression.

Maximum compression is achieved when T =
√

2
√

N and the original N real

numbers that represent the original signal are encoded as 2
√

2
√

N real numbers under

the alternative representation. This puts a theoretical limit of
√

2
√

N
4 on the compression

rate attainable with the algorithm. As will be seen in Section 3.3.2, optimizations in

the way the alternative representation is stored will lead to higher compression rates in

practice for all tested signals.

93

Algorithm 2 forms the core of the compression algorithm, where the most important

and resource-intensive processes take place and, as will be seen shortly, dominates the

complexity of the compression algorithm.

The DFT of the whole signal, as seen in line 8 of the algorithm, has O(N log(N))
complexity. In line 10, lmaxT0−dT0/2e autocorrelation steps are performed, at the (max-

imum) complexity of O(N) for each lag, plus a maximum O(N) complexity in deter-

mining the lag with the highest correlation value among the evaluated lags. Considering

k = lmaxT0 − dT0/2e, one can write the complexity of the fixed part of the algorithm as

O(N log(N)) + O(kN) + O(N), which can be simplified to O(N log(N)).
The iterative part of Algorithm 2, under the while loop, is repeated (N − T)

times. There are two options to implement the DFT indicated in line 17: we can perform

it directly, at the cost of T log(T) operations per iteration, or we can use a sliding discrete

Fourier transform (SDFT), that demands T log(T) operations for the first iteration (R.

Lyons, 2003) and 3T operations, a complex multiplication and two additions per time

instant (Orallo et al., 2017), for each subsequent iteration. Regardless of the approach,

additional T operations are necessary, at each iteration, to find the maximum value of

the result. All remaining operations in each cycle are not a function of T .

Using the direct DFT approach results in a total of (N−T)(T log(T)+T) operations

in the iterative part of the algorithm. After expansion, we have TN log (T) + TN −

T 2 log (T) − T 2; the complexity is dominated by the TN log (T). For N, T ≥ 1, the

function is monotonically increasing in relation to both N and T and, since T ≤ N , it

reaches its maximum when N = T , conferring O(N2 log(N)) complexity for the direct

DFT approach.

The SDFT method demands a total of T log(T) + (N − T − 1)3T + (N − T)T , or

4TN +T log(T)−3T−4T 2 operations. When N = T , the number of operations necessary

is dominated by 4N2, giving a complexity of O(N2).
For large values of N , we have that O(N2) < O(N2 log(N)), and can say, provided

we choose the SDFT implementation, that the iterative part of Algorithm 2 has O(N2)
complexity. Since this dominates the complexity of O(N log(N)) found for the initial part

of the algorithm, we can say that the segmentation algorithm as a whole has complexity

O(N2).
To determine the complexity of the complete compression algorithm, however,

we need to analyze the additional steps necessary for generating and storing the new

representation of the original signal, not described in Algorithm 2. From the vector n,

94

that contains the indices of the samples that represent frontiers between adjacent pseudo

cycles, the output of the segmentation algorithm, we first divide the original signal into

segments.

The maximum absolute value of each segment has to be found, as shown in Equa-

tion 23, and each segment normalized, as per Equation 24, for a total of 3N operations.

Converting the P normalized segments to the frequency domain via DFT, as in

Equation 24, demands (ni+1−ni) log(ni+1−ni) operations for each segment, where ni+1−ni

is the length of each segment and (n2−n1)+(n3−n2)+ · · ·+(nP +1−nP) = N ; assuming,

as a simplification, pseudo cycles of equal length, such that n2 − n1 = n3 − n2 = · · · =
nP +1 − nP = T , we have the case where the original signal is divided into P = N/T

pseudo cycles of length T each. Hence, we have a total of PT log(T) = N log(T) for the

steps described.

We need then to average P segments of length T along their indices, for a total

of N computations, plus T log(T) computations, regarding the IDFT, to bring back the

average to the frequency domain. This totalizes N + T log(T) operations.

Finally, we generate vector t from vector n, as seen in Equation 22, at the cost of

P computations, and store vectors t, a, and w with P + P + T operations.

We have then, for the additional steps of the compression, a total of 4N+N log(T)+
T log(T)+3N/T +T computations. For N, T ≥ 1 the terms with log(T) are monotonically

increasing and dominate the complexity in the worst-case scenario when T = N and

N → ∞; the additional compression steps, therefore, have complexity O(N log(N)).
The complexity of the whole compression algorithm is thus dominated by the O(N2)
complexity of the segmentation part of the algorithm, and can be said to be O(N2).

The decompression step was designed to be simpler, to ensure performance com-

patible with real-time usage. In practice, more efficient approaches than the DFT-IDFT

pair in Equation 25 can be drawn from the vast wavetable literature to resample the

base waveform. Although formally described in Equation 25 as a DFT followed by an

IDFT, domain conversions to scale the basis waveform were substituted by cubic Hermite

interpolation in the implementation.

After reading the vectors t, a, and w at the cost of P + P + T operations, an

interpolation model is constructed in approximately T operations. Each evaluation of a

new sample demands additional log(T) plus 1 operation to multiply it for the appropriate

amplitude. We have, then, a total of P + P + T + T + N(log(T) + 1) for the decompres-

sion phase, which gives a maximum complexity of O(N log(N)) for the decompression

95

algorithm.

This difference in complexity is reflected in the times presented in Figure 52, where

the compression and decompression performance of the implementation is tested in a

practical scenario.

96

4 THE GENERAL ALGORITHM

After laying the theoretical groundwork for a better understanding of discrete

quasi-periodic signals — and, consequently, the sound of pitched musical instruments —

in Sections 3.3 and 3.4, and introducing an improved representation for such sounds in

Section 3.4.1, it is now possible to design and implement the digital musical instrument

that is the main objective of the present work.

While the algorithms presented in Sections 3.3 and 3.4 were developed with the

ultimate goal of enabling the representation introduced in Section 3.4.1, that serves as

the basis for the plugin, they were published as independent papers and ultimately placed

in the Proposed Techniques chapter, of a more general scope, on the grounds that their

usefulness is not restricted to the present context.

This chapter concerns itself, thus, mainly with the process of actually describing

the general framework that enables the real-time emulation of pitched musical instruments

and the singing voice.

For the accurate description of such a framework, however, two key components

are yet to be introduced: the neural network responsible for learning the mappings from

the high-level descriptions of the desired sounds to the neural-networks-friendly represen-

tation, and the plugin that transforms this representation into the actual sound signals.

Those entities are introduced, respectively, in Sections 4.3 and 4.2 of this chapter, after a

brief commentary, in Section 4.1 on the ecosystem in which they reside.

A diagram representing an overview of the general workflow for the emulation of

a particular instrument is shown in Figure 26.

97

Raw Samples

Raw sample 1

Raw sample 2

Raw sample 3...

Pre Processing

Manual cleanup

Silence removal

 Normalizationrenaming

Format conversion

Selection

Splitting

ChannelsParts

Sample library

sample 1

sample 2

sample 3

Validated (Wav, mono)

Meaningfully named

Reasonable length

Reasonable harmonicity

...

Processing

Convertion

segmentation

envelope extraction

Neural network inputs

Neural network targets - (time domain)

Envelopes

Information about sample library

Decision

Number of frequencies Number of layers

Number of neurons per layer

Training strategy

Training

Training script

ONNX files

Logs

Cloud and / or desktop

Periodic automatic backups

Transformation to NN friendly representation

Neural network targets
(frequency domain)

Previously Available...

Recorded...

synthesized...

Playing

Neural network

Plugin

Real-time input

DAW

MIDI

Sound

Choose instrument
to emulate

Legend

Files

Ad hoc procedures

optional Ad hoc procedures

information

custom software

Comment

software
Start / end

Resumes automatically from last saved state

Figure 26: Workflow for the emulation of an instrument, starting with the process of
acquiring the samples and culminating in the generation of a trained neural network to
serve as the plugin’s engine.

As Figure 26 illustrates, the process starts with the acquisition of samples that

must represent, as best as possible, all the dynamics one would like to reproduce in a

particular instrument. In the case of a piano, for example, one would use a set of samples

comprised of recordings of each of its keys played at different velocity levels. An analogous

set, with the piano in its dumped state, as well as sets representing multiple microphone

positions, can also be used. Ideally, multiple redundant samples of each of those sounds,

known as round-robins, would be present.

As for the origin of those samples, they could be recorded from a real instrument or

generated by (physical) simulation, most probably using a resource-intensive simulation

algorithm that doesn’t lend itself well for real-time synthesis. In the case of recorded

samples, they could be pre-recorded, and made available, free or commercially, by third

parties, or specifically recorded for the purpose of the algorithm’s implementation. The

last case, while preferable, is sometimes cost-prohibitive.

98

The next step of the process consists of the pre-treatment of the samples. It can

involve the normalization of the collected samples, to ensure that samples representing

a particular sound intensity have, in fact, consistent volume. Silence removal is also a

common task in this step, as is the conversion of the files from the original format in

which they were recorded to the mono Waveform Audio File (WAV) format.

It is possible also, in this step, to split the channels of stereo files into two individual

mono samples, artificially generating round-robins. Sometimes, available libraries encode

many individual samples sequentially in the same file, in which case they must also be

split.

It is also common in this step, especially in the case of using previously available

samples, to discard samples that don’t conform to the specifications, for various reasons:

they can be corrupted by external noise, be too long, or don’t represent their nominal

pitch, for example. Although the conversion algorithm infers the necessary characteristics

of each sample, such as pitch and intensity, in order to generate the appropriate neural

network input, it is common to rename files in this step, to a more convenient naming

convention.

The output of the previous steps is a consistent and validated set of samples ex-

hibiting reasonable length and harmonicity, as shown in “Sample library”, in Figure 26.

The prerequisite of reasonable length is imposed by the necessity of performing the FFT

in each sample, to assess its predominant frequency, and compare it to the predominant

frequency inferred by the “Conversion algorithm”, the algorithm that also performs the

envelope extraction and segmentation of the samples.

This requisite is intentionally left vague since it must be fixed by the user, according

to the hardware and time available for the task. Based on this comparison, samples with

discrepancies in their pitch, as inferred by the algorithm and the FFT, corresponding to

distances greater than two semitones, are automatically excluded by the algorithm and

marked as discarded in its log. Hence, the “Reasonable harmonicity” requirement. This

cautionary check is done to prevent subtle interferences from making their way into the

training of the network, generally considerably more resource and time-intensive, where

they would degrade the results of the emulation, in an opaque way.

The “Processing” step in Figure 26 transforms this set of samples into two se-

quences of vectors, encoded as CSV files, and saves them to the disk. Each sample is

segmented into its pseudo cycles. For each pseudo cycle, input information — such as

the predominant pitch and volume of the original sample it belonged to, as well as the

99

pseudo cycle index — are stored in the input sequence. The corresponding pseudo cycle,

still in its time domain representation, is stored in the corresponding entry in the output

sequence, as described in more detail in Section 4.3.

Information about the envelope of each sample is also extracted and saved, to be

used later by the plugin. This step additionally outputs general information about the

samples used, in the form of a CSV file, such as the maximum amplitude of each original

sample, their inferred pitch, minimum, maximum, and average periods, length and size

in disk, to name a few, that can be used to inform the training step.

This information, besides being used to inform the training step, must be used to

establish the number of frequencies to be used in order to emulate the original instrument,

as well as the number of parameters of the network. Both topics are discussed more

profoundly in Section 4.2 and Section 4.3, where baseline values are derived and can be

used as-is in the vast majority of cases.

To account for potential failures, a log is saved periodically during the training

process. Upon resuming training, the script checks for preexistent logs, and automatically

resumes from the last saved position, if such information is available.

Training can be performed both in cloud environments, or on a local desktop, and

can sequentially (but not concomitantly) be performed in both, given the convenience:

training can proceed for a period of time on a local desktop, be resumed on a cloud

environment, and resume locally, for example.

Once properly trained, the networks function as the plugin’s engine and can be

used to generate sounds. This is done either directly, by using a real-time controller such

as a musical keyboard with MIDI-controller capabilities, or hosting the plugin in a DAW,

where it can also be controlled in real-time or can be used to interpret preexistent MIDI

files.

4.1 THE ECOSYSTEM

While audio applications are, at their core, no different from any other pieces of

software, an understanding of the current ecosystem regarding audio software, especially

in relation to tacit industry standards and consolidated best practices can be beneficial for

the efficiency and compatibility of the final product. Besides rendering the development

process more streamlined, this knowledge guarantees that consistent design decisions can

be made at the early steps of development, minimizing the necessity of refactoring and

reimplementation.

100

The first important practical peculiarity to be noted is that, although many audio

plugins run directly in a gamut of operational systems, it is more common for them to

be used as plugins, hosted in pieces of software called DAWs. This is so because sound

applications are seldom used in isolation. Generally, in a production environment, one or

more generator plugins, representing instruments such as keyboards and drum kits, are

combined with effect plugins, such as reverb and equalizers, to generate the desired final

sound.

Those generator plugins can be controlled in real-time or be fed a preexistent

set of commands representing the performer’s actions, generally in a high-level music

description language such as the MIDI format (more details about the format can be found

in Section 2.5). DAWs, in this setting, are responsible for receiving and processing the

inputs and forwarding them to its hosted plugins, besides providing the interface for the

exchange of relevant information between the various plugins. It is also common for other

conveniences, such as sound recording, parameter automation, and macro capabilities, to

be offered by DAWs.

Although the VST format, introduced by Steinberg in 1996, is the most common

format for sound plugins, they are also available as Audio Units (AU), an equivalent of

the VST format focusing on the Apple ecosystem; Real-Time AudioSuite (RTAS) and its

successor Avid Audio eXtension (AAX) formats used by Avid’s Pro Tools DAW, as well

as many other, less popular, formats.

Development of plugins in those formats involves the use of a Software development

kit (SDK), provided by the respective vendors, that exposes classes and functions, usually

in the C++ language. Given the architectural similarities between the most common plugin

formats, the use of higher-level libraries that unify the development process became the

norm.

One such framework is the JUCE (Raw Material Software Limited, 2022) library.

Besides enabling the unified development for the VST, AU, RTAS and AAX plugin for-

mats, applications using this library can be compiled to software that runs natively in

Windows, macOS and Linux desktops, as well as IOs and Android devices.

The library also provides cross-platform classes that can be used to implement

the application’s Graphical user interface (GUI). The framework is also very mature and

widely used for the development of both commercial and open-source plugins. For these

reasons, it was chosen for the implementation of the plugin object of this work.

As software running sandboxed in a host environment, the plugin must exhibit a

101

reactive nature, responding mostly to MIDI messages, delivered by the host, emulating the

playing dynamics of the instrument. Those messages can correspond to real-time inputs

produced, for example, by a physical MIDI controller instrument such as a keyboard. They

can also be read from an existing MIDI file that can be either a record of a performance

or a manually crafted file.

The other technical pillar of the plugin introduced here is the available neural

networks ecosystem that is, in some important aspects, very different from the digital

musical instrument’s ecosystem. While C++ is the de facto programming language for

the development of music software, neural networks research tends to rely extensively on

more high-level, interpreted languages, such as Python.

The usual architecture of frameworks used in neural networks research involves

the implementation, in C++ or other low-level compiled languages, of individual modules,

responsible for the more intensive calculations.

Frameworks such as the Pytorch (FAIR, 2016) library, bundle a collection of such

modules, besides providing a layer of abstraction over the functions exposed by those

modules. This enables the language in which the models are programmed by the final

user to be different from the languages in which the modules are implemented; usually a

high-level, interpreted, dynamically-typed language such as Python is used as the interface

language offered to the researcher.

This approach has the advantage of simplifying research while adding little over-

head to the process of training and inferencing with neural networks, since most of the

critical, resource-intensive tasks are performed by optimized, low-level code.

On the other hand, however, the customization of individual modules can be chal-

lenging, since it must be done in a language with which the researcher has potentially no

familiarity. Another problem is the implementation of the final models in a production

environment, where any improvement in efficiency is desirable. In those situations, as

well as in situations where speed is one of the main concerns, such as in the context of

digital musical instruments, it is desirable that the whole ecosystem is coded in compiled

languages, such as C++.

As a strategy to extract the best aspects of both approaches, the Open Neural

Network Exchange (ONNX) (The Linux Foundation, 2019) format was introduced, to

enable the compatibility of trained neural network models between different libraries,

potentially coded in different programming languages.

The format was formalized in 2017 by a joint initiative between Microsoft (Boyd,

102

2017) and Facebook (Bird et al., 2017), and nowadays includes the support of companies

such as IBM, Huawei, Intel, AMD, Arm, and Qualcomm (Shah, 2017). The format defines

a syntax to describe computation graphs, and specific operators to be used in those graphs,

that are guaranteed to be implemented by libraries that adopt the standard (The Linux

Foundation, 2019).

Outside of the strict MIDI specification, the JUCE library allows one to define other

controllers, that function in a similar manner to the Mod Wheel, and can be controlled

and automated via the GUI associated with the instrument.

We define three such controllers: one to control the decay of the sounds produced

— useful in the emulation of instruments that consist of an initial excitation followed by

a reverberation phase, such as pianos and acoustic guitars — and two more to control

different aspects of the various instruments that the plugin will be able to emulate.

In the case of the singing voice, for example, one of those controllers is used to

control the gender of the voice, while the other controls the vowel that is being emulated.

This summarizes the high-level interface exposed by the instrument to the per-

former, in case of real-time usage, or to the high-level notation language.

4.2 OMNES SONOS: A REAL-TIME AUDIO PLUGIN APPLICATION

The plugin implemented in this work is divided into two entities: the plugin per

se, a piece of software that handles the logic of translating the representation of the user

interaction into the signal that constitutes the final output of the model, and trained

neural networks, that function as a set of engines encoding the logic specific to each

instrument that can be emulated using the plugin. Details of the sample libraries that

each of those engines are meant to emulate can be found in Table 2.

As mentioned, audio plugins are generally hosted by a DAW, operating in a sand-

boxed environment, with little information about the actual hardware in which they are

running, apart from the information conveyed by their host. In addition to the performer’s

information, the host provides the expected sampling rate, the number of audio channels

that should be filled, and the number of samples needed at each time. The goal of the

plugin is to use this input to efficiently generate the actual samples.

A plugin can’t enforce a pre-defined sampling rate, but must instead provide mean-

ingful samples at the sampling rate requested by the host. Although this sampling rate

in which a plugin must operate is normally constant, it can in fact change at any given

instant, to respond, for example, to a lack of available hardware resources, or to a settings

103

change on the part of the user. For those reasons, the implementation must be as efficient

and flexible as possible.

Likewise, it is also impossible for a plugin to enforce, or even be certain of, the

size of the buffers used to accumulate its samples and, hence, the number of samples it

needs to generate. Those characteristics translate, in the context of the present work, to

strong indications that a frequency-domain approach is preferable. Another argument in

this direction is that sound signals, owing to their oscillating nature, exhibit redundancies

that are best accounted for using intrinsic cyclic models.

Using the algorithms developed earlier in this work, we are currently able to remove

the influence of the temporal envelope on a quasi-periodic wave and segment it in its

pseudo cycles. From the inputs to the plugin — more specifically, the expected frequency

and sampling rate — we can derive the pseudo cycle the plugin is supposed to reproduce

at any given time.

While one could train a network to directly learn this mapping, this direct approach

is potentially problematic, for the main reason that, although multi-rate frameworks exist

at least since the 1980s, the model would be biased towards a particular sampling rate.

The direct approach also makes it very difficult to control the processing require-

ments of the model, and gracefully degrade the quality of the emulation to use less pro-

cessing power and conform to lower-end hardware, for example.

A third drawback is that the direct approach forcefully encodes the phase informa-

tion of the signal, burdening the model with the task of learning superfluous information,

as the phase is not used by the final model to generate the sound.

On the other hand, since the algorithm’s focus is on real-time sound synthesis,

we would ideally want to model the problem in such a way that domain conversions are

employed primarily during the training step, leaving the evaluation as streamlined as

possible.

In other words, it isn’t necessary to visually emulate the waves in each of the

pseudo cycles since “sound” is not a univariate function, in the psychoacoustic sense: a

multitude of different signals can have a similar sound, as long as they exhibit similar

underlying characteristics. The most relevant characteristics of each pseudo cycle can be

more compactly represented in a time-frequency domain, for example.

Figure 27 shows individual normalized pseudo cycles isolated by the algorithm

presented in Section 3.4 both in the frequency domain — which would correspond to the

direct approach mentioned above — and in the frequency domain, in the form of their

104

power spectra.

0 20 40 60

−0.5

0

0.5

0 20 40 60 80
−0.5

0

0.5

0 50 100
−1

−0.5

0

0.5

0 100 200

−0.5

0

0.5

0 10 20 30
0

0.2

0.4

0.6

0 10 20 30 40
0

0.1
0.2
0.3
0.4

0 20 40 60
0

0.2

0.4

0.6

0 50 100 150
0

0.1

0.2

0.3

Time Time Time Time

Frequency Frequency Frequency Frequency

A
m

pl
itu

de
A

m
pl

itu
de

sopranoA, 932 mezzosoprano, 945 bass, 316 cello, 239

Figure 27: Selected pseudo cycles from various singing voices and a cello, represented in
the time and frequency domains. The number of the pseudo cycle is presented after the
name of the instrument, after a comma.

Interesting insights can be derived from Figure 27: it can be seen that the most

meaningful values, in the frequency domain representation, are concentrated at the be-

ginning of the spectra, making it easier to discard less relevant data in order to improve

the efficiency of the algorithm.

This representation also facilitates the elimination of the DC offset, represented

by the amplitude at the index 0 of the power spectra, eliminating fluctuations between

adjacent pseudo cycles. It must be noted that, to ensure that no artifacts arise when the

original signal is reconstructed, the segmentation algorithm must be precise in determining

the boundaries between pseudo cycles.

105

0 20 40 60
−0.5

0
0.5

0 20 40 60 80
−0.5

0
0.5

0 50 100
−1

−0.5
0

0.5

0 100 200
−0.5

0
0.5

0 20 40 60
−0.5

0
0.5

0 20 40 60 80
−0.5

0
0.5

0 50 100
−1

−0.5
0

0.5

0 100 200
−0.5

0
0.5

0 20 40 60
−0.5

0
0.5

0 20 40 60 80
−0.5

0
0.5

0 50 100
−1

−0.5
0

0.5

0 100 200
−0.5

0
0.5

0 20 40 60
−0.5

0
0.5

0 20 40 60 80
−0.4
−0.2

0
0.2
0.4

0 50 100
−0.5

0
0.5

0 100 200
−0.5

0
0.5

O
rig

in
al

20
 fr

eq
s

10
 fr

eq
s

5
fre

qs
sopranoA, 932 mezzosoprano, 945 bass, 316 cello, 239

Figure 28: Selected pseudo cycles from various singing voices and a cello, and their
reconstructed versions from partial frequency domain representations.

Figure 28 shows the original pseudo cycles and their reconstructions using different

numbers of frequencies: it can be seen that they can be accurately reconstructed using a

fraction of the total frequency domain information. This discussion concludes the high-

level characterization of the model to be implemented in the remainder of this chapter,

since it defines the inputs and the outputs they must be mapped to.

Given the complex relationship between the inputs and outputs, the core of the

plugin relies on a neural network that receives a vector encoding the inputs as discussed

in the previous section, and outputs the frequencies’ amplitudes that characterize the

pertinent pseudo cycle of the instrument to be emulated.

Having established the more important characteristics of the networks that serve

as the core of the proposed plugin, it is now possible to design how the outputs of those

networks are to be efficiently converted into sound signals.

This is no trivial task, as the demands of real-time sound synthesis impose a num-

ber of technical constraints in the implementation. Conceptually, the most distinguishing

characteristic differentiating sound synthesis software from general programs is the exis-

tence of two processing threads running in the former.

A low-level thread is responsible for the sound generation process, and must be

made as efficient as possible. All operations that aren’t strictly necessary to the generation

of the requested samples must not take place in this thread. Blocking operations, most

106

notably reading from and writing to disk, must be delegated to the high-level thread, for

example.

The high-level tread is responsible, beyond other things, for pooling user input,

managing the GUI, and the majority of general-purpose tasks common to general pro-

grams. In the case of sound synthesis plugins, the information received from the host,

concerning relevant aspects for the synthesis such as the sampling rate in which the host

is currently operating and the number of sound channels that need to be filled, is collected

opportunely by this thread and made available to the inner thread in an unobtrusive way.

Determining exactly how much processing can be performed in the low-level thread

— the thread responsible for the generation of the sound samples — before the introduc-

tion of unacceptable lag and other artifacts is a hard task, and often follows a trial-and-

error approach. Hence, during the design phase of the plugin, it is a good practice to

introduce a quality setting that can be tweaked to account for this potential bottleneck.

In the case of the present work, this takes the form of the number of frequencies used to

reconstruct the sound.

To obtain the amplitudes of those frequencies, however, it is necessary to perform

inference, using the trained neural networks, at each successive period — obtained from

the predominant frequency — of the sound that is to be synthesized. Noting that the

period of a waveform is inversely proportional to its frequency, it is easy to see that this

poses a challenge to the implementation, since the frequency of inferences necessary varies

greatly according to the predominant frequency of the sound the plugin needs to emulate.

For a standard grand piano with 88 keys, for example, we have a highest predom-

inant frequency of approximately 4186 Hz, implying as many cycles and, hence, neural

network inferences per second when key 88 is pressed, while in the lowest frequency, trig-

gered by key 1, only 27 inferences per second are necessary. To address this problem, the

inferences are implemented asynchronously, in the following manner: once a particular

note is requested for the first time by the low-level thread, the plugin requests, passing

the relevant information, the corresponding frequencies’ amplitudes from the network,

and blocks the thread for a couple of milliseconds until those amplitudes are returned by

the network and stored in a buffer.

At each successive new sample request, the inner thread uses the information about

the amplitudes already stored in that buffer, and checks if the network has completed the

last request. In case it has, a new request is made, and the network will asynchronously

update the buffer as soon as a new set of amplitudes is available, and update its internal

107

state to signal that it is free to perform a new inference. The number of inferences, then,

is automatically limited by the processing power of the underlying hardware, without the

need for the design and implementation of sophisticated control logic.

A constant concern when emulating pitched instruments is enforcing the correct

pitch. To guarantee that a reference to the base frequency is always organically present,

all calculations necessary to transform the amplitudes to samples in the time domain are

performed considering the current period, as established by the frequency associated with

the currently pressed note.

The process is started by a request from the low-level thread for the generation

of a number of samples, responding to a key down event that can be caused by a player

pressing a midi controller key in real-time, or by a message from a pre-recorded MIDI file.

Two situations can happen when a key is pressed: if no other note is being played

at the time of the key down event, or if there is another note already playing but the plugin

is not in legato mode, the behavior is the same, and the plugin triggers an inference with

the neural network, as noted before, sending the relevant data, and waits for the resulting

amplitudes.

In the event of a note being already played, in legato mode, the key down event

causes the dominant frequency to be shifted smoothly from the original note to the new

note, and the new amplitudes to be requested from the network according to the new

predominant frequency intended. From a psycho acoustical point of view, a slide effect is

perceived by the listener.

It was hinted, during the high-level description of the plugin model given at Section

4.1, that not all original information from the original sound samples was needed for their

reproduction. This is the case since the power spectra shown in Figure 27 do not include

phase information.

One could reconstruct the samples from this information by arbitrarily filling this

gap: assuming, for example, every sinusoid to have a zero phase. It is shown in Tarjano

et al. (2019), however, that a similar result can be obtained from using random phases

for each of the sinusoids constituting the final complex wave. To prevent inharmonicity,

however, the same randomly generated phases must be used for the whole duration of a

single note.

This last approach has two marked advantages: it enables the plugin to efficiently

avoid the sensation of repetition, a common problem encountered in sample-based instru-

ments known as the machine gun effect and, perhaps more importantly, it enables the

108

generation of multi-channel sounds from a model trained with mono samples. For that

reason, for each channel, a random vector of phases is created, to be used during the

whole period in which the note is sounding.

There are two additional controllers that enable the user to change the pitch of the

note currently being played. The bend wheel changes the bend in real-time, proportionally

to the amount by which it is moved. The vibrato wheel introduces a sinusoidal change in

both the frequency and the amplitude of the current sound. The position of the vibrato

wheel does not affect, however, the amplitude of the sinusoid that describes the vibrato

effect.

Both of those effects are implemented as changes in the predominant frequency of

the current note, having profound influence on the model, since they use the amplitudes

that the network was trained to provide for those frequencies, thus emulating the natural

dynamics of the underlying instrument.

Lastly, the attack control modulates the initial envelope of the sound, while the

decay control limits the duration of the sound.

4.3 THE NEURAL NETWORKS

The design of neural network-based models is sometimes considered an art. Al-

though much of the foundations arise from mathematical theories, in practice, one finds

that the corresponding implementations are often tweaked ad hoc, empirically, in order

to be more efficient.

This is the case, for example, of backpropagation, the optimization algorithm em-

ployed at the backward pass of the training process, where the parameters of the network

are updated based on the gradients of the error. Although gradient descent, for example,

is well established mathematically, it is seldom used naively, in practice, in the context

of neural networks: extensions, such as the addition of momentum, are introduced to

improve performance.

Another factor that contributes to this characteristic is the presence of many vari-

ables that independently influence the results. Generally, due to the time and effort re-

quired, it becomes infeasible to methodically investigate the interrelationship of all those

factors, and one has to trace an inquiry path based partially on prior experience.

Regarding the design of the networks, one is presented with many choices of archi-

tectures and activation functions. In the training phase, a batch size, a loss function, and

a learning rate must be chosen. Optionally, dropout and other regularization techniques

109

can also be used. Ideally, one would test all combinations of those parameters. In prac-

tice, however, this approach is seldom feasible because of time and resource constraints,

and small subsets of those parameters are tested, based on prior findings in the literature

and previous experience.

Since the aim of the plugin is not merely encoding a complete sequence, to be

decoded unchanged at request, recurrent architectures, such as RNNs or the more recent

Transformer (Vaswani et al., 2017) architecture, are not indicated. Those architectures

use their past outputs as inputs for their next inference, being prone to degenerate into

chaotic behavior once their outputs are further processed before being reutilized as inputs.

To avoid that, it is common to generate a whole sequence before processing it.

At each instant during sound synthesis, however, characteristics of the inputs to the

network, such as the velocity and other dynamics, are liable to change, and feedforward

networks can handle those changes promptly, while avoiding instability, besides being

more efficient.

In the case of the plugin proposed here, the raw data is a set of samples ideally

representing all the possible articulations of a particular instrument, and also covering

its whole frequency range in the case of discrete range instruments such as pianos and

guitars. In the case of instruments with a continuous range of possible frequencies — such

as the singing voice, and unfretted string instruments, such as violins and cellos — one

would ideally have access to samples representing the range at arbitrary intervals. The

available free sample libraries, however, are severely more limited, and the training phase

has to be designed to be robust in relation to those limitations.

As commented before, the plugin has to deal with input parameters representing

velocity, pitch, vibrato, decay, and potentially the two additional inputs; not all those

parameters need to be fed to the neural network, however. To generate samples, the

network needs the values of the first general articulation (gender, in the case of voice, for

example), the second general articulation (vowel, in the case of voice, for example), the

base frequency, the pseudo cycle number, and the velocity.

To generate this information, the samples from the instrument library are seg-

mented into their pseudo cycles. Each pair input-target that must be learned by the

network consists of the pseudo cycle description introduced below and the frequency do-

main representation, respectively.

The input information can be encoded in the vector I = {g0, g1, f, p, v} ∈ R5
≥0,

where 0.0 ≤ g0, g1, f, p, v ≤ 1.0. The entries g0 and g1 are entries reserved for instrument

110

specific articulations; in the case of the networks emulating the singing voice we have that

g0 = 1.0 for male voices and g0 = 0.0 for female voices. Likewise, g1 encodes one of the

five vowels most common in the English language: g1 = 0.0 represents “a”, g1 = 0.25 for

“e”, g1 = 0.5 for “i”, g1 = 0.75 for “o” and g1 = 1.0 for “u”.

The entry f encodes the base frequency corresponding to the key pressed by the

performer. Recalling that the MIDI format provides 128 keys, encoded as an integer from

0 to 127, this information can be encoded as key /127, where key ∈ N, 0 ≤ key ≤ 127
represents the key pressed by the performer, linked to the expected frequency by Equation

1.

Despite the fact that it is common for the sample libraries to provide the nominal

frequency of each sample in the form of the key or the note they correspond to, the

frequency of each pseudo cycle is derived from the predominant frequency of the original

sample, as obtained by the FFT. As a measure to render the model more robust to eventual

processing errors, samples that exhibit a measured predominant frequency diverging from

their labels by more than one note are automatically discarded.

The following entry in vector I encodes the index of the pseudo cycle to be learned.

This involves segmenting all samples of the library, and determining which sample has

the larger number Pmax ∈ N of pseudo cycles. Each index of the pseudo cycles is then

divided by Pmax to assure that 0.0 ≤ p ≤ 1.0.

The last entry v in the input vector encodes the velocity, or intensity, with which

the note was played. Besides having a direct effect on the loudness of the sound emitted,

which will be predominantly addressed by the plugin, instead of the neural network, the

velocity customarily also affects the characteristics of the sound. This information is also

extracted from the whole sample, in the form of the maximum absolute amplitude of

its individual samples and, depending on the library used to read the samples, comes

normalized between 0.0 and 1.0.

The targets of the network follow from the discussion in the preceding section,

illustrated in Figure 28, and consist of an arbitrary number t of entries of the power spectra

of each pseudo cycle, starting from the index 1. This information can be encoded in the

vector T = {a1, a2, · · · , at} ∈ Rt, where 0.0 ≤ a1, a2, · · · , at ≤ 1.0 and a1 + a2 + · · ·+ at =
1.0. The number t of frequencies used in the reconstruction will be determined empirically,

as the maximum value that does not interfere with the real time performance of the plugin.

Since both the inputs and outputs of the network consist of positive values between

0.0 and 1.0, it was chosen for the activation function, to be used after each layer, a

111

modified version of the hyperbolic tangent, as shown in Figure 29. Especially in the

output layer, this function assures that the outputs won’t exceed 1.0, preventing clicks

and other artifacts in the generated sounds. This function was chosen as an alternative

to the more common Sigmoid function, since its inflection point is at x = 0.5, instead of

x = 0.0, as is the case of the Sigmoid function.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Figure 29: Activation function used in all layers of the network.

The operation of extracting inputs of the network from the original samples can be

time-consuming; for this reason, this information is stored compactly in binary format,

as a form of buffer, to speed up further training. That strategy is also employed in the

generation of the targets. Once the input information for the sample library representing

a specific instrument is created, it can be reused for every other network involving that

instrument. The outputs, however, are dependent on the number of frequencies to be

considered and are reutilized whenever possible.

Despite the fact that the number of samples available in the libraries used in this

work is inferior to the ideal, the volume of data is still very high: the network must be able

to learn from a massive number of input-target pairs, while relying on as few parameters

as possible in order to be able to perform inferences in real-time.

There is also the problem that the psychoacoustic quality of the results cannot be

assessed in the frequency domain and the outputs of the networks have to be transformed

to the time domain to be compared with the targets. For this reason, the networks are

112

generally assessed using two metrics: the traditional loss metric compares the outputs of

the network with the respective targets, in the frequency domain, and is the metric used

during training for the computation of the gradients; all outputs of a given network are

used in this computation.

Given the sheer amount of data, and the additional computational cost of domain

conversions, however, it is not feasible to compare each output of the network with its

time-domain counterpart. To circumvent this problem, this work makes use of a sampling

strategy: at the end of each epoch, two sets of 200 samples are extracted from the outputs

of the network, each sample representing a pseudo cycle, converted to the time domain,

and their average errors are calculated.

The first is a random set of samples, that changes at each epoch, and helps to

identify eventual outliers, while the second is a fixed set of samples consisting of 200

outputs equally spaced. Two metrics are calculated using those two sets of samples: the

random error and the deterministic error, respectively. Those metrics provide a better

idea of the training process.

While designing the general architecture of a neural network, it is often helpful to

go through a rough testing phase, where more parameters can be investigated, albeit more

superficially. The few more promising results from this preliminary test step can then be

further investigated, via a series of more comprehensive tests. This approach is especially

relevant when defining the best optimizer to be used in the training of the networks, since

there is a considerable variety of options to choose from.

The approach employed in this work is as follows: in each test step run, the amount

of time in which a network is permitted to run is constrained, and the networks able to

reach the smaller errors in this time window are chosen, either to be evaluated in the next

step, or to be ultimately used in the algorithm. Periodically, the state of the training

process is saved, enabling recovery from eventual errors.

4.3.1 Optimizer

Using the described approach, we can start testing for the best optimizer. Pytorch,

the framework used in the design and training of the networks in this work, offers an

ample choice of pre-implemented optimizers, among which 11 are potentially suited for

the characteristics of this model.

This first step compares those most prominent optimizers: Adagrad (Duchi et al.,

2011), Adadelta (Zeiler, 2012), Adam (Kingma et al., 2014), Adamax (Kingma et al.,

113

2014), AdamW (Loshchilov et al., 2017), ASGD (Polyak et al., 1992), NAdam (Dozat,

2016), RAdam (Liu et al., 2019), RMSprop (Graves, 2013), Rprop (Riedmiller et al., 1993)

and Stochastic Gradient Descent (SGD) (Sutskever et al., 2013).

Even for a preliminary step, with limited time for each network to run, the number

of optimizers is relatively elevated. For this reason, we chose to test the optimizers with a

limited dataset that is, nonetheless, representative of the kind of task to be accomplished.

Figures 30 and 31, where the average deterministic and random errors are shown,

give an overview of the performance of those optimizers in the training of a test piano

library. The sample library is composed of 88 samples, representing the 88 keys of a

standard grand piano with only one velocity for each key. The network has a feedforward

architecture, composed of 3 layers with 50 neurons each, and the custom tanh activation

discussed before. The output is composed of the 10 first amplitudes of the frequency

domain representation.

600 700 800 900
0.18

0.19

0.2

0.21

0.22

0.23

0.24

Adadelta Adagrad Adam Adamax AdamW
ASGD NAdam RAdam RMSprop Rprop
SGD

Time (seconds)

Er
ro

r

Figure 30: Comparison of the performance of the average deterministic error of the opti-
mizers. The errors from the RMSprop and Rprop optimizers can’t be seen in the figure,
as they are above the shown region.

Given the data density, the figures are best visualized through their interactive

versions available on the website prepared for this work (Tarjano, 2022). It can be seen

that the Adam, AdamW, and RAdam optimizers offer the best performance overall, with

the Adam and AdamW optimizers delivering virtually indistinguishable results. Those 3

optimizers are variations of the Adagrad algorithm that employ an exponential moving

114

average of the gradients as a means of regularization (Reddi et al., 2019).

600 700 800 900

0.17

0.18

0.19

0.2

0.21

Adadelta Adagrad Adam Adamax AdamW
ASGD NAdam RAdam RMSprop Rprop
SGD

Time (seconds)

Er
ro

r

Figure 31: Comparison of the performance of the average random error of the Adam,
AdamW and RAdam optimizers. The behavior of the other optimizers can be seen in the
interactive version of the figure.

Based on those preliminary experiments, we can single out the Adam, AdamW and

RAdam optimizers in order to further investigate their performance under more diverse

circumstances, such as using different configurations of network parameters, and with the

use of a realistic sample library.

The sample library used to compare the Adam, AdamW and RAdam optimizers

is composed of 461 sounds recorded from a Steinway model D grand piano, representing

various velocities for each key. After being segmented into pseudo cycles, the library is

transformed into 562576 pairs of inputs and targets, occupying a total of 21.4 MB of disk

space for the inputs and 754.6 MB for the targets. This information is condensed in Table

2, alongside information about the other sample libraries used in the rest of this work.

Figures 32, 33 and 34 show the comparison of the quality of those three optimizers

in different architectures, using the three error metrics discussed before. The first metric

shown in Figure 32, is the loss, the average error between all the targets and the outputs

of the network in the frequency domain, as used during training; this metric can be

considered the main measure of error, since it synthesizes the error of the whole network.

As commented earlier, however, it doesn’t directly convey the time-domain error of the

network.

115

For this reason, Figures 33 and 34 present the two time-domain metrics, the de-

terministic and random error, respectively, described at the beginning of this chapter.

0 50 100 150 200
0.2

0.4

0.6

0 50 100

0.3

0.4

0.5

0 50 100 150 200
0.2
0.3
0.4
0.5
0.6

0 50 100 150 200
0.2

0.4

0.6

0 50 100 150 200

0.3

0.4

0.5

0 50 100 150 200
0.2

0.4

0.6

0 50 100 150 200
0.2
0.3
0.4
0.5
0.6

0 50 100 150 200
0.2

0.4

0.6

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

Adam AdamW RAdam

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

3 layers with 10 neurons 3 layers with 100 neurons 3 layers with 50 neurons

4 layers with 10 neurons 4 layers with 50 neurons 5 layers with 10 neurons

5 layers with 50 neurons 6 layers with 10 neurons 6 layers with 50 neurons

Figure 32: Comparison of the performance of optimizers, using the average deterministic
error metric, for the Steinway model D sample library. Lower values are better.

0 50 100 150 200

0.05

0.1

0.15

0 50 100

0.05

0.1

0 50 100 150 200

0.05

0.1

0 50 100 150 200

0.05

0.1

0 50 100 150 200

0.05

0.1

0 50 100 150 200

0.05

0.1

0 50 100 150 200

0.05

0.1

0 50 100 150 200

0.05

0.1

0.15

0 50 100 150 200

0.05

0.1

Adam AdamW RAdam

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

A
ve

ra
ge

 L
os

s

3 layers with 10 neurons 3 layers with 100 neurons 3 layers with 50 neurons

4 layers with 10 neurons 4 layers with 50 neurons 5 layers with 10 neurons

5 layers with 50 neurons 6 layers with 10 neurons 6 layers with 50 neurons

Figure 33: Comparison of the performance of optimizers, using the loss metric, for the
Steinway model D sample library. Lower values are better.

116

0 50 100 150 200
0.2

0.4

0.6

0 50 100
0.2

0.3

0.4

0.5

0 50 100 150 200
0.2
0.3
0.4
0.5
0.6

0 50 100 150 200
0.2

0.4

0.6

0 50 100 150 200
0.2

0.3

0.4

0.5

0 50 100 150 200
0.2

0.4

0.6

0 50 100 150 200
0.2

0.4

0.6

0 50 100 150 200
0.2

0.4

0.6

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

Adam AdamW RAdam

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

3 layers with 10 neurons 3 layers with 100 neurons 3 layers with 50 neurons

4 layers with 10 neurons 4 layers with 50 neurons 5 layers with 10 neurons

5 layers with 50 neurons 6 layers with 10 neurons 6 layers with 50 neurons

Figure 34: Comparison of the performance of optimizers, using the average random error
metric, for the Steinway model D sample library. Lower values are better.

Table 1 presents Pearson’s correlation coefficient between the data shown in Figures

32, 33 and 34. Observing the figures, it is possible to see that the behavior of the three

metrics is similar; the correlations on the table confirm this intuition.

Regarding the correlation between the loss (L on the table) of all the outputs of

the network in the frequency domain and the average error of 200 equally spaced outputs

(D) transformed to the time domain, presented in the column labeled LxD r, one can

see that the smallest coefficient is 0.91, while the average of all correlation coefficients is

0.97.

Similarly, for the column labeled LxR r, representing the correlation between the

loss and the average error of 200 random sampled outputs (R), the average correlation is

0.92, while for the column comparing the deterministic and random errors (LxD r), the

average correlation coefficient is 0.94.

117

Table 1: Correlation between the three metrics used throughout this work, for different
neural network architectures. The labels at the top row are as follows: l - layers; n -
neurons; opt - optimizer. The remaining labels use the following abbreviation: L - average
loss, in the frequency domain; D - average error of 200 equally spaced outputs, transformed
to the time domain; R - average error of 200 randomly sampled outputs, transformed to
the time domain. The r and p indicators stand for the Pearson’s correlation coefficient
and the two-tailed p-value, respectively.

l n opt LxD r LxD p LxR r LxR p DxR r DxR p
3 10 Adam 1.00 1.1e-34 0.99 4.4e-32 1.00 3.2e-39
3 10 AdamW 1.00 2.9e-37 1.00 9.1e-35 1.00 1.4e-44
3 10 RAdam 0.97 9.2e-12 0.97 1.7e-12 1.00 4.3e-21
3 100 RAdam 0.97 5.9e-05 0.94 5.5e-04 0.98 1.5e-05
3 100 Adam 1.00 8.4e-23 1.00 1.5e-18 1.00 2.8e-19
3 100 AdamW 0.91 3.3e-09 0.31 0.16 0.28 0.21
3 50 Adam 0.99 1.2e-84 0.83 1.3e-28 0.83 7.1e-29
3 50 AdamW 0.98 7.3e-17 0.91 5.1e-10 0.92 3.2e-10
3 50 RAdam 0.99 1.4e-12 0.99 2.9e-13 1.00 5.8e-20
4 10 Adam 1.00 1.4e-34 1.00 8.3e-37 1.00 5.3e-43
4 10 AdamW 0.94 2.1e-17 0.92 1.4e-14 0.97 7.9e-23
4 10 RAdam 0.95 2.9e-09 0.94 1.2e-08 1.00 8.7e-18
4 50 RAdam 0.92 1.2e-06 0.90 5.3e-06 1.00 1.9e-14
4 50 Adam 0.98 2.2e-17 0.78 1.0e-05 0.81 3.0e-06
4 50 AdamW 0.98 3.0e-14 0.93 1.6e-09 0.94 2.4e-10
5 10 Adam 1.00 2.3e-41 1.00 4.8e-39 1.00 1.8e-45
5 10 AdamW 0.98 2.0e-25 0.98 1.1e-23 0.99 2.0e-33
5 10 RAdam 0.98 2.4e-14 0.98 1.1e-13 1.00 2.1e-27
5 50 RAdam 1.00 2.0e-13 0.99 4.1e-12 1.00 4.0e-16
5 50 Adam 0.98 3.5e-18 0.98 3.9e-17 1.00 1.4e-24
5 50 AdamW 0.99 4.1e-20 0.99 2.2e-20 0.99 1.2e-22
6 10 Adam 0.97 3.7e-19 0.90 1.7e-12 0.95 3.8e-16
6 10 AdamW 0.99 2.6e-27 0.99 7.5e-25 1.00 2.3e-32
6 10 RAdam 0.97 5.7e-11 0.96 1.4e-09 0.99 2.6e-13
6 50 RAdam 1.00 1.4e-17 1.00 8.5e-15 1.00 3.2e-15
6 50 Adam 0.95 7.1e-13 0.86 9.2e-08 0.88 1.4e-08
6 50 AdamW 0.95 2.2e-11 0.93 1.2e-09 0.96 1.7e-11

Since the error metrics are a more direct measure of the final quality of the model,

the rest of this work will focus on those. It will be seen in Section 4.3.2 that this approach

also facilitates the analysis of the performance of different loss functions.

As further tests will also make use of other sample libraries, representing not

only other instruments but also singing voices in different registers, it is appropriate to

introduce the sample libraries used in the rest of this work, and briefly comment on

their characteristics. Their most important indicators can be seen in Table 2. The table

118

presents 7 libraries, of which 3 model the human voice and 4 model musical instruments.

The choice of instruments and voices, constrained by the availability of free sample

libraries with sufficient quality and variety of articulations, was guided by the desire of

testing the proposed framework in as wide a range of instruments as possible.

The SteinwayD library was based on samples recorded from a Steinway & Sons

model D grand piano, originally made available by the bitKlavier (Trueman et al., 2021)

project under the GPLv3 license, an open-source initiative to create a flexible digital

instrument using the JUCE (Raw Material Software Limited, 2022) framework. Starting

from A0, each minor third interval was recorded at 16 velocity layers in stereo format.

More information about the recording setup used can be found at https://bitklavier.

com/the-bitklavier-grand.

The Guitar library used samples from the Philharmonia (Rouvali, 2021) website,

a symphony orchestra founded in 1945. Their website offers free-to-use samples recorded

from standard orchestral instruments, as well as the most common popular instruments,

captured by members of the orchestra. The samples used were originally in mono MPEG-2

Audio Layer III (MP3) format.

The SteinwayB library was based on samples made available by the University of

Iowa Musical Instrument Samples (MIS) (Fritts, 1997), recorded in 2001 from a Steinway

& Sons model B grand piano, and offered in stereo Audio Interchange File Format (AIFF)

format. More details of the recording setup can be found at https://theremin.music.

uiowa.edu/MISpiano.html

The Violin library was also based on samples offered by the MIS initiative, pre-

sented in mono AIFF format, with more recording details available at https://theremin.

music.uiowa.edu/MISviolin.html.

Lastly, the three voice base libraries — Soprano, Vox and Metavox — were based

on samples from the Vocalset (Wilkins et al., 2018) project, released under the Creative

Commons Attribution 4.0 license, in the WAV mono format. The Soprano library roughly

models the soprano register and, thus, has only 4 male voice samples. The Vox library

has 182 female samples and the Metavox has 67 female voice samples.

https://bitklavier.com/the-bitklavier-grand
https://bitklavier.com/the-bitklavier-grand
https://theremin.music.uiowa.edu/MISpiano.html
https://theremin.music.uiowa.edu/MISpiano.html
https://theremin.music.uiowa.edu/MISviolin.html
https://theremin.music.uiowa.edu/MISviolin.html

119

Table 2: Information about the sample libraries used throughout this work. Storage sizes
refer to the arrays stored on disk using the NumPy binary format (.npy).

Name Instrument Samples Ipts-Tgts I (MB) O (MB)
SteinwayD Piano 461 562576 21.4 754.6
Guitar Acoustic Guitar 41 9873 0.384 12.6
SteinwayB Piano 124 111796 4.3 83.5
Violin Violin 96 84372 3.2 45.7
Soprano Voice 119 177658 6.8 119.2
Vox Voice 227 302971 11.5 217.1
Metavox Voice 108 125313 4.8 97.4

Figures 35, 36 and 37, for example, show the comparison of the evolution of the

average deterministic and random errors for a variety of architectures training on some

of the sample libraries presented in Table 2.

0 100 200 300 400
0.2

0.4

0.6

0 100 200 300 400

0.2

0.25

0.3

0 100 200 300 400
0.2

0.3

0.4

0.5

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

0.25

0.3

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0 100 200 300 400
0.2

0.3

0.4

0.5

0 50 100 150 200

0.22

0.24

0.26

0 100 200 300 400
0.2

0.4

0.6

0 100 200 300 400

0.25

0.3

0 50 100 150 200

0.25

0.3

Adam Adam Rand AdamW AdamW Rand

SteinwayD

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

3 layers with 10 neurons 3 layers with 50 neurons 3 layers with 100 neurons

4 layers with 10 neurons 4 layers with 50 neurons 4 layers with 100 neurons

5 layers with 10 neurons 5 layers with 50 neurons 5 layers with 100 neurons

6 layers with 10 neurons 6 layers with 50 neurons 6 layers with 100 neurons

Figure 35: Comparison of the performance of optimizers, using the average deterministic
and random error metrics, for the Steinway model D sample library.

120

0 200 400 600
0.2

0.3

0.4

0.5

0.6

0 200 400 600
0.2

0.3

0.4

0.5

0 200 400 600
0.2

0.3

0.4

0 200 400 600
0.2

0.3

0.4

0.5

0.6

0 200 400 600

0.2

0.25

0.3

0.35

0 200 400 600
0.2

0.3

0.4

0.5

0 200 400 600
0.2

0.4

0.6

0 200 400 600
0.2

0.3

0.4

0.5

0.6

0 200 400

0.2

0.22

0.24

0 200 400 600
0.2

0.3

0.4

0.5

0 200 400 600
0.2

0.3

0.4

0.5

0 200 400

0.2

0.25

0.3

Adam Adam Rand AdamW AdamW Rand

Violin

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

3 layers with 10 neurons 3 layers with 50 neurons 3 layers with 100 neurons

4 layers with 10 neurons 4 layers with 50 neurons 4 layers with 100 neurons

5 layers with 10 neurons 5 layers with 50 neurons 5 layers with 100 neurons

6 layers with 10 neurons 6 layers with 50 neurons 6 layers with 100 neurons

Figure 36: Comparison of the performance of optimizers, using the average deterministic
and random error metrics, for the Violin sample library.

Due to the similarities in the general performance of both optimizers, the network

will make use of the Adam optimizer, for its generality (Reddi et al., 2019) and also

its relevance in the deep neural networks community (Zou et al., 2019), which cause its

implementations to be generally more mature and tested.

4.3.2 Loss function

The loss function, that is, the function used to compare the outputs of the network

and their respective targets in the frequency domain, generating the gradients that are

used to update the network parameters during the training process, can have an impact

on the features learned by the network, for example by shifting the priority from the

reduction of the biggest errors to a more uniform treatment of the errors.

To understand those effects, it is convenient to experiment with three different loss

functions. Starting from the traditional MSE, one can deemphasize the contribution of

121

0 500 1000 1500

0.2

0.4

0.6

0 500 1000 1500

0.2

0.4

0.6

0 500 1000
0.15

0.2

0.25

0 500 1000 1500

0.2

0.4

0.6

0 500 1000 1500
0.15

0.2

0 200 400 600 800

0.16

0.18

0.2

0.22

0 500 1000 1500

0.2

0.3

0.4

0.5

0 500 1000
0.15

0.2

0.25

0.3

0.35

0 2000 4000 6000
0.15

0.2

0.25

0 500 1000 1500

0.2

0.4

0.6

0 500 1000

0.16

0.18

0.2

0 100 200 300 400

0.16

0.18

0.2

Adam Adam Rand AdamW AdamW Rand

Voice

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

3 layers with 10 neurons 3 layers with 50 neurons 3 layers with 100 neurons

4 layers with 10 neurons 4 layers with 50 neurons 4 layers with 100 neurons

5 layers with 10 neurons 5 layers with 50 neurons 5 layers with 100 neurons

6 layers with 10 neurons 6 layers with 50 neurons 6 layers with 100 neurons

Figure 37: Comparison of the performance of optimizers, using the average deterministic
and random error metrics, for the Voice sample library.

errors with relatively high magnitudes or, on the other hand, emphasize it.

To raise the penalty attributed to the biggest errors, one can use the average of

the individual errors to the fourth power, instead of squaring the error, as is done by the

MSE loss. Conversely, by defining the loss as the average of the absolute values of the

individual errors, each error is treated equally, irrespective of its magnitude.

We thus define two additional loss functions, besides the MSE: A4E = ((a1 − t1)4 + (a2 − t2)4 + · · ·+ (at − tt)4) /t

and AAE = (|a1 − t1|+ |a2 − t2|+ · · ·+ |at − tt|) /t where T = {a1, a2, · · · , at} is the vec-

tor representing a specific target of the network, as defined before, and O = {t1, t2, · · · , tt}

a vector representing its corresponding output.

Figure 38 compares the three loss functions for various architectures training on

the Voice dataset. As a means to directly compare the behavior of the different loss

functions, in the figure, the deterministic and random errors associated with each loss

function are shown, and not the losses themselves.

122

0 50 100

0.2

0.25

0.3

0.35

0 50 100

0.18

0.2

0.22

0.24

0 50 100

0.2

0.25

0 50 100

0.2

0.3

0.4

0.5

0 50 100

0.2

0.25

0 50 100
0.2

0.3

0.4

0.5

0.6

0 50 100

0.2

0.3

0.4

0.5

0.6

AAE Det. Err. AAE Rand. Err. MSE Det. Err. MSE Rand. Err. A4E Det. Err. A4E Rand. Err.

Voice

Time (seconds) Time (seconds) Time (seconds)

Time (seconds) Time (seconds) Time (seconds)

Time (seconds)

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

A
ve

ra
ge

 E
rr

or

3 layers with 10 neurons 3 layers with 50 neurons 3 layers with 100 neurons

10 layers with 10 neurons 10 layers with 50 neurons 10 layers with 100 neurons

50 layers with 10 neurons

Figure 38: Comparison of the performance of three loss functions, using the average
deterministic and random error metrics, for the Voice sample library. Lower is better.

While the errors associated with the A4E loss function exhibit a somewhat stable

behavior, this is in general the function with the poorest performance. An equivalence is

visible between the MSE and AAE loss functions, with the former consistently presenting

better performance. Since the MSE loss is the standard loss function in most models, often

implemented via native, more efficient implementations in most platforms, this result is

not entirely unexpected, and its use will be preferred for the rest of the present work.

4.3.3 Number of parameters

Having decided on the feedforward architecture for the network, the activation

function, the optimizer and the loss function to be used during training, it is now necessary

to empirically investigate the parameters that lead to acceptable psychoacoustic results

without compromising the efficiency of the plugin, and without causing the network to

overfit the data.

123

For the training of the final networks, it is expected that the necessary number of

layers and the number of neurons in each layer will change from instrument to instrument,

reflecting the changing number of articulations that are available and need to be learned,

the available number of samples to use in the training process and the intrinsic sound

characteristics of the particular instrument.

As a consequence, it is necessary to investigate multiple architectures for each

sample library, in order to empirically identify the one that yields the best results. For

that reason, the training process was designed to enable its execution both in normal

machines and in cloud computing environments. While this introduces difficulties in the

comparison between networks trained in different hardware, it helps to speed up the

exploration of parameters.

It is important to estimate a window, as narrow as possible, inside which the

best settings will lie for every sample library. Figures 39, 40 and 41 show the minimum

deterministic errors obtained, for each sample library, with a combination of different

numbers of layers and neurons. Those images are best appreciated via their interactive

counterparts available in the online version of the present work.

0.17

0.18

0.19

0.2

0.21

SteinwayB

Figure 39: Minimum deterministic error obtained by training a network, with different
numbers of layers and neurons, over the SteinwayB library.

For the SteinwayB library, the minimum deterministic error was obtained with an

architecture of 3 layers, with 50 neurons each. For the Voice library, 4 layers with 100

neurons each enabled the lowest deterministic error, while the Violin library reached its

minimum with an architecture of 5 layers with 200 neurons each. From the figures, it can

124

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Violin

Figure 40: Minimum deterministic error obtained by training a network, with different
numbers of layers and neurons, over the Violin library.

be seen that those are comfortable limits in which to train those instruments, with slight

variations of those parameters not causing, in general, a great change in the minimum

error obtainable.

This information will inform the training step of the instruments, which is also

constrained by the necessity of operating in real-time without introducing a noticeable

lag to the final implementation.

4.4 THE TRAINED INSTRUMENTS

Having established the most prominent aspects of the whole plugin architecture,

the specificities of the core networks encoding the information that enables the emulation

of the actual instruments, and the implementation details in the preceding sections, this

section describes the training of the final networks. Each sample library presented in

Table 2 will give rise to a different instrument, in the form of a trained network.

The last aspect that demands further investigation is the optimal number of fre-

quencies’ amplitudes, which was briefly discussed in Section 4.1. Observing the perfor-

mance of the implementation operating at different numbers of amplitudes on average

hardware, this value can be empirically set at 200 amplitudes; above this value, perfor-

mance degradation starts to be noticeable.

As Figure 42 makes clear, however, considering more amplitudes does not neces-

sarily translate to better results. It can be the case where the network spends resources

125

0.18

0.2

0.22

0.24

0.26

Voice

Figure 41: Minimum deterministic error obtained by training a network, with different
numbers of layers and neurons, over the Voice library.

trying to learn vanishingly small amplitudes that do not contribute significatively to the

overall time-domain quality of the outputs. This can be seen, in Figure 42, in the form

of the increased average deterministic error when the number of amplitudes outputted by

the network and used in the reconstructing of the sound rises from 50 to 100.

In general, a value around 50 amplitudes seems to yield the best reconstructed

sound; all networks in Table 3 reached the best average deterministic error using this

number of amplitudes.

Table 3: Name and minimum deterministic error of the final networks used as instrument
engines.

Instrument Training time (s) Min avg det error Layers Neurons
Metavox 33491.926679 0.048290 4 50
SteinwayB 13551.295610 0.063610 4 50
Voice 91251.573417 0.068629 4 50
Vox 38397.425609 0.082569 4 70
Violin 5087.474661 0.087303 4 50
SteinwayD 75576.204085 0.115561 4 50
Guitar 3052.396993 0.190615 4 50

It can also be seen from Table 3 that the best architectures are similar: all ex-

hibit 4 layers, and only for the Vox sample library the number of neurons was different

from 50 neurons in each layer. Besides not introducing a considerable lag in the plugin

implementation, it will be seen that the size on disk of the trained networks, at less than

126

20 40 60 80 100

0.12

0.14

0.16

0.18

0.2

0.22

SteinwayD

Amplitudes

M
in

im
um

av
er

ag
e

de
te

rm
in

is
ti

c
er

ro
r

Figure 42: Minimum deterministic error for various numbers of amplitude outputs, for
the SteinwayD sample library.

50 KB each, is orders of magnitude smaller than the equivalent state-of-the-art digital

instruments available.

127

5 RESULTS

The first two sections of this chapter analyze the quality of the algorithms intro-

duced in sections 3.3 and 3.4, since they form the foundation of the plugin presented in

Section 4.2. While the analysis of the envelope extraction algorithm follows a more the-

oretical approach, the segmentation algorithm is analyzed from a pragmatic perspective,

considering an almost direct application to lossy sound compression, and how the results

compare to established codecs.

The section that closes this chapter (Section 5.3) analyses the implementation of

the audio plugin, in relation to its quality. To that end, its first subsection explores

the errors of the networks and their meaning in the context of the perceived quality of

the generated sound, while the second subsection compares the plugin with commercially

available digital instruments.

5.1 QUALITY OF THE ENVELOPE

The lack of a precise definition of what an envelope is makes the assessment of the

quality of an envelope a difficult task (X. Hu et al., 2012), for which there are no agreed-

upon objective metrics. Recalling Figure 10, however, and the accompanying discussion,

if one divides, elementwise, the original signal by the extracted envelope, the carrier wave

obtained is expected to be bounded between -1 and 1.

Figures 43, 44 and 45 present real-world discrete waves w, their extracted envelope

e, and the inferred carrier c.

From Figure 43 it can be seen that the algorithm performs well under the car-

rier boundedness criteria. This is especially remarkable for the case of spoken voice, a

notorious complex wave with fast changes in pitch and high noise content.

128

0 10k 20k 30k

−1

0

1

A
m

pl
itu

de

Figure 43: Signal, envelope, and carrier of a male voice uttering the word “amazing”.

Those characteristics are in stark contrast with those of the singing voice in Figure

44, where a recording of an alto singer sustaining a steady note is shown. There, the wave

is almost periodic, with a stable waveform and envelope, reflecting the clear and pitched

qualities of the underlying sound. The superior frontier of the carrier wave in this case is

approximately horizontal.

0 10k 20k 30k 40k

−1

0

1

A
m

pl
itu

de

Figure 44: Signal, envelope, and carrier for an alto singer sustaining a steady note.

129

Figure 45 shows the representation of a bend performed on an electric guitar.

The fast frequency variations in the signal did not affect the envelope extracted, nor the

boundedness of the carrier wave.

0 20k 40k 60k 80k

−1

0

1

A
m

pl
itu

de

Figure 45: Signal, envelope, and carrier for a bend performed on an electric guitar.

5.1.1 Reference envelope

In Bruce et al. (1992) and Jia et al. (2019), the envelope is defined as the boundary

of the region filled by a family of curves. Figure 46 illustrates this concept for a family

of sinusoids, modulated by a polynomial, that share the same frequency and amplitude,

and whose phases vary from 0 to 2π.

130

0 20 40 60 80

−1.5

−1

−0.5

0

0.5

1

1.5

Envelope Family of sinusoids with same frequency and amplitude
A

m
pl

itu
de

Figure 46: Envelope as the boundary of the region filled by a family of curves, for a family
of sinusoids with the same frequency and amplitude, modulated by a polynomial.

In practical applications, one is generally interested in obtaining the envelope of

a single known signal, seldom having access to a family of curves. By shifting this sig-

nal around its initial position, an approximation to a family of curves can be obtained,

however, and can be used to construct a reference envelope.

Given a discrete signal w, the reference envelope r = (r0, r1, · · · , rN−1) is formalized

in Equation 26, where kpred is the predominant frequency of w, as obtained by the index of

the maximum absolute value of the DFT of the original signal, and Tmax its predominant

period. Moreover, the value of the original signal w outside the interval 0 ≤ n < N is

assumed to be zero.

kpred = argmax (F(w))

Tmax = N/kpred

rn = max
(
wn− Tmax

2
, wn− Tmax

2 +1, wn− Tmax
2 +2, · · · , wn+ Tmax

2

) (26)

131

0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

Signal

Reference envelope

A
m

pl
itu

de

Figure 47: Part of the reference envelope obtained by shifting the original signal horizon-
tally, for the sound of a tom drum.

The envelope obtained is not smooth, being composed of a series of horizontal

segments, as can be seen in Figure 47. Those segments, however, agree with the general

contour of the wave and overestimate and underestimate the envelope in equal measures.

Although lacking in applicability, both because of its discontinuous shape and the

high computational cost involved in its estimation, an envelope constructed in this way

arises from a mathematically sound background and can serve as a reference to infer the

quality of more practical methods. This envelope is used in the comparisons presented in

Table 4, for example.

5.1.2 Comparison with traditional algorithms

Direct comparison with many recent algorithms is made difficult by the unavail-

ability of digital implementations of such works, some of which were designed to process

analog signals (e.g. Assef et al., 2018).

Nevertheless, insight can be gained from comparing the method here proposed with

some of the most common envelope extraction algorithms. Specifically, we compare the

present method with the following approaches:

132

1. Smoothing - This is a relatively simple procedure that, applied to the absolute values

of a discrete signal, can provide an approximation of the variation of its amplitude

in time. This work uses the Savitzky-Golay algorithm (Savitzky et al., 1964) with

a window width of 3001 samples and a cubic polynomial fitting.

2. Filtering - The absolute value of the wave is filtered using a digital implementation

of the Butterworth (Butterworth et al., 1930) low pass filter. This work uses an

order 2 filter with a cut-off frequency of 10 Hz.

3. Hilbert Transform - The Hilbert transform is applied to the original signal, filtering

the absolute value of the complex result with a Butterworth filter with a cut-off

frequency of 1/10 of the fundamental frequency of the original signal.

Figure 48 presents the comparison in the case of a simple sinusoid. The algorithm

introduced in this work and the Hilbert transform approach comply with the third con-

dition proposed by Loughlin et al. (1996), which states that the envelope of a periodic

wave should be a straight line.

0 10k 20k 30k 40k
−1

−0.5

0

0.5

1

Signal Hilbert Smoothing Lowpass Filter Present Work

A
m

pl
itu

de

Figure 48: Comparison of envelope detection algorithms for a simple sinusoid. The enve-
lope for the Hilbert transform and for the present work are coincident in the image.

For a recording of the key 33 of a grand piano, where parts of the sound, especially

at the beginning, are highly percussive and noisy, all traditional approaches undershoot

the original signal, as can be seen in Figure 49.

133

0 50k 100k 150k 200k
−1

−0.5

0

0.5

1

Signal Hilbert Smoothing Lowpass Filter Present Work
A

m
pl

itu
de

Figure 49: Comparison of envelope detection algorithms for the sound of the key 33 of a
grand piano

In Figure 50 the representation of the signal of a soprano singer sustaining a steady

note is shown. All envelopes exhibit a similar movement along the samples, but the ones

generated by traditional algorithms are consistently undershooting the original wave.

0 100k 200k 300k 400k

−0.5

0

0.5

1

Signal Hilbert Smoothing Lowpass Filter Present Work

A
m

pl
itu

de

Figure 50: Comparison of envelope detection algorithms for the vocalization of a soprano
singer

134

Besides the comparatively inferior results, the traditional methods demanded a

careful choice of parameters. In the case of the Hilbert transform, post-processing in the

form of filtering was needed, and an appropriate cut-off frequency had to be chosen. That

is in contrast with our method, which organically tunes itself via the automatic choice of

the circle’s radius representing the average discrete curvature of the signal.

Table 4 presents the average of the absolute errors of the techniques, when com-

pared with the reference envelope introduced at the end of Section 5.1.

Table 4: AAEs of each algorithm in relation to the reference envelope. All signals were
previously normalized.

Signal Present Work Smoothing Low pass Hilbert
alto 0.0033 0.5800 0.5836 0.4021
bend 0.0038 0.1268 0.1278 0.0435
brass 0.0109 0.3154 0.3154 0.1866
nonperiodic 0.0000 0.3623 0.3680 0.0002
piano 0.0195 0.0678 0.0680 0.0388
sinusoid 0.0000 0.3636 0.3614 0.0001
soprano 0.0027 0.3911 0.3911 0.2091
spoken_voice 0.0496 0.2793 0.2794 0.1612
tom 0.0073 0.0506 0.0532 0.0228

Average 0.0108 0.2819 0.2831 0.1182

Table 4 shows that the proposed method consistently outperforms the traditional

approaches for all waves tested, yielding an error of less than 2%, on average, of the error

of the traditional methods.

The processing times of the algorithms, for each signal, are shown in Table 5. The

Python source for the tests, as well as the samples used, are available at the repository

dedicated to the envelope algorithm (Tarjano, 2020), in the file Comparison of Envelope

Algorithms.py.

The methods were performed as described at the beginning of this section, using

the implementations available at the Scipy library, under the Signal processing module.

The proposed algorithm is, on average, the second-fastest.

135

Table 5: Processing time of the algorithms, in seconds.
Signal Present Work Smoothing Low pass Hilbert

alto 0.010 0.096 0.007 0.006
bend 0.009 0.146 0.005 0.067
brass 0.015 0.253 0.005 0.035
nonperiodic 0.002 0.064 0.003 0.007
piano 0.022 0.316 0.009 0.030
sinusoid 0.003 0.069 0.003 0.006
soprano 0.111 0.574 0.013 0.293
spoken_voice 0.003 0.062 0.003 0.017
tom 0.002 0.070 0.001 0.004

Average 0.020 0.183 0.005 0.052

5.2 QUALITY OF THE SEGMENTATION

In this section, the quality of the segmentation algorithm presented in Section 3.4

is assessed from various perspectives. Due to the lack of established metrics, a lossy

compression application is designed in Section 5.2.1, and its performance analyzed. In

Section 3.4.2 a theoretical analysis of the algorithm was performed, in order to establish

its theoretical complexity.

The goal of this section is to assess, as objectively as possible, the quality of the

segmentation algorithm discussed in Section 3.4, since the absence of similar algorithms

and consequently established metrics makes the quality assessment more difficult. Al-

though the algorithm is implemented in the form of a usable executable file and can be

employed in the compression of harmonic files with modest durations, it is not meant for

general usage in its current form.

Particularly, the lack of provisions for dealing with stochastic residuals and files of

arbitrary length must be addressed in order to transform the algorithm into a general-

purpose codec. Currently, the compression algorithm uses a single basis waveform, ob-

tained from the average of the pseudo cycles segmented with the segmentation algorithm,

as the blueprint to resynthesize the original signal, that being the main cause of its short-

comings.

It is worth noting, however, that in the context of the general framework for

emulation of instruments, the main object of the present work, each pseudo cycle in which

the original samples are divided is learned by a neural network, that has the potential to

learn it as precisely as desired. For this reason, the limitations of the compression codec

do not propagate to the general framework, and are not addressed in this work.

136

5.2.1 Application to Lossy Audio Compression

Sound signals can be broadly classified as harmonic or percussive (Driedger et al.,

2014), with harmonicity being related to the periodicity of the signal (Mitrović et al.,

2010). In most real-life applications, signals of interest can be seen as a mix of both

components, and harmonic/percussive source separation techniques can be used when

one component is best considered in isolation (Masuyama et al., 2019).

In the musical domain, where harmonicity plays a fundamental role, highly har-

monic signals are more abundant; the sound libraries that serve as the foundation for

sample-based musical instruments are an example of an application where such signals

are abundant.

Domain-specific compression algorithms and codecs designed to exploit particular

characteristics of families of related signals exist in many areas. W. Chen et al. (2016),

for example, present a scheme for compressing CNNs, while Cánovas et al. (2014), besides

revising existing methods, propose two lossy approaches for the compression of quality

score data of genomic sequencing. The use of lossy compression for wireless networks of

sensors is studied in Zordan et al. (2014).

More recently, the work of Calhoun et al. (2019) explores the benefits of specific

lossy compression algorithms in the context of checkpoints of computational simulations,

stored between sessions. New technologies, such as 3D immersive audio, have propelled

specific compression algorithms, like the one presented in C. Hu et al. (2021).

Another example is the ACER codec, introduced in Cunningham et al. (2014),

which offers an unconventional approach to compression, in that it identifies redundant

pieces of a signal that can be indexed in a dictionary. The results seem to be satisfactory,

from a perceptual standpoint, when compared with MP3 and Advanced Audio Coding

(AAC) codecs (Cunningham et al., 2019). Regarding sample-based digital musical in-

struments, however, no such specialized algorithms, despite the general high harmonicity

often exhibited by those signals, exist.

The adoption of special compressed formats would enable sample-based digital

instruments to be implemented in a wider range of hardware, where the storage and

processing requirements now make the cost prohibitive, such as electronic drum kits,

digital pianos, lightweight hardware such as Raspberry Pi and Arduino and even mobile

phones and tablets.

Starting from the discussion in Section 3.4.1, a compressed encoding scheme can

137

be derived by storing the vectors t, w, a. They can be later used to reconstruct the wave,

as in Equation 25.

The binary format used to store those vectors uses C++ built-in types, and consists

of a header of 4 positive integers, where the number of individual samples N , the signal’s

original sampling rate, the envelope, and the waveform size are stored. The header is

followed by the periods, as an array of unsigned shorts. The waveform amplitudes and

lengths, both encoded as arrays of unsigned chars, are also stored.

The Main.cpp file at the root of the accompanying repository (Tarjano, 2021)

contains the write_bin function, responsible for saving the representation to disk in

binary format. It will be seen in Section 5.2 that this representation is reasonable for a

large number of real-world signals, especially in the case of sample-based digital musical

instruments.

5.2.2 Comparison With Traditional Lossy Codecs

In order to investigate how the codec introduced in Section 3.3.2 performs in prac-

tice, we implemented, in the C++ language, a compression algorithm based on it; the

source code and a compiled executable for machines running Windows OS are available

at the GitHub repository prepared for the algorithm (Tarjano, 2021).

We compare the performance of this implementation, dubbed HC, with three of

the most common lossy codecs, in the compression of 16 sound samples chosen to repre-

sent audio as would be encountered in the libraries of sample-based instruments, while

providing enough diversity to test several aspects of the algorithm. They present various

degrees of harmonicity and envelope modulations, as well as duration and frequencies,

and are divided into 8 voice samples and 8 instrument samples.

Some extreme sounds, less likely to be present in those libraries, were added to

test the resilience of the algorithm.

The mezzo-soprano sample, for example, contains a trill at the beginning that

evolves to a pronounced vibrato towards the end of the signal. It was chosen to provide

feedback on how the algorithm deals with a rapid alternation between pitches.

The trumpet sample, with more than 70 seconds of duration, is also unlikely to be

found in sample-based libraries. Being a somewhat stable sound, it would be generated

by combining a short initial articulation with a repeating sample. The crash cymbal

signal, being fundamentally inharmonic, was added to test the algorithm’s performance

in a worst-case scenario.

138

Details about the original samples are shown in Table 6. The MPEG-7 standard

defines 17 low-level descriptors for audio files, that summarize how different characteristics

of the sound evolve over time (Sikora et al., 2005), one of them being harmonicity. The

third column of the table shows a similar measure of harmonicity that addresses, however,

the zero-lag peak problem identified by Sikora et al. (2005) in the original MPEG-7 stan-

dard implementation, which causes a large value of correlation to be encountered, for all

signals, at lags near zero. The full Python implementation of the algorithm can be found

at the repository dedicated for this algorithm (Tarjano, 2021), and is directly accessible

from the URL github.com/tesserato/compression/blob/main/harmonicity.py.

The samples from professional singers were obtained by processing sounds from

the Vocalset library(Wilkins et al., 2018). The male singer sample was based on a sample

from the Human Voice Dataset (Vocobox, 2015).

The instrument samples were based on samples freely available at the resources

page of the Phillarmonia symphony orchestra website (Rouvali, 2021), except the violon-

cello samples, which were processed from the base samples available at the MIS website

(Fritts, 1997).

All original signals are uncompressed mono audio in the WAV format, sampled at

a standard sampling rate of 44100 Hz and encoded with a bit rate of 705 kilobits per

second (kbit/s), normalized, and with eventual long silences manually removed.

The first format we compare the HC codec to is the popular MP3 format, the

third layer of the MPEG-1/2 specification, proposed in 1992 (Britanak et al., 2018) by

the Moving Picture Experts Group.

The AAC format was chosen as the second format. In addition to being the formal

MP3 successor, developed by a joint effort between industry and academia (Britanak et

al., 2018), it is used in services like Apple iTunes and YouTube (Seichter et al., 2016).

Outside the MPEG committee, the open-source Opus format, standardized by the

Internet Engineering Task Force (IETF) in 2012, was chosen as the third comparison

format. Being considered Vorbis’ successor (Gunawan et al., 2018), the codec supports

both speech and music, has very low delay (Valin et al., 2013), and is used in real-time

audio applications such as WhatsApp (Srivastava et al., 2019).

The main goal of introducing the compression codec is to illustrate a practical

application of the features extracted with the segmentation algorithm. Demonstrating

that the original signal can be approximately reconstructed from those features establishes

the potential of the algorithm in classification tasks such as the one in Muhammad et

github.com/tesserato/compression/blob/main/harmonicity.py

139

al. (2014), where MPEG-7 low-level features are used to separate normal voice from

pathological voice.

For this reason, preference was given to compare the HC codec with well-known

formats with readily available implementations. It is worth noting, however, that the

MPEG-4 Audio Standard presents speech coding tools such as Harmonic Vector Exci-

tation Coding (HVXC) and Harmonic and Individual Lines plus Noise (HILN), aimed

at parametrically representing voice and general signals, respectively (Purnhagen et al.,

2000), in a manner related to the one presented in this work.

The HC encoding and decoding were done with the implementation available at the

segmentation’s repository (Tarjano, 2021), while the MP3 encoding and decoding were

done with the LAME library (LAME Developers, 2017). All other format conversions

were made with the FFmpeg library. The PowerShell scripts used in the process are

available in the related repository (Tarjano, 2021); the original waves and the compressed

files can also be heard at the repository or, more conveniently, at harmoniccompression.

firebaseapp.com.

Table 6: Details of the original signals used to test the algorithm. The path is in relation
to the root of the repository prepared for the algorithm (Tarjano, 2021).

Path Name Harm. Duration (ms)

01_sopranoA.wav soprano A 0.987 2597.78
02_sopranoB.wav soprano B 0.990 2299.34
03_mezzosoprano.wav mezzo-soprano 0.886 4255.10
04_baritone.wav baritone 0.896 1838.98
05_countertenorA.wav countertenor A 0.766 2470.27
06_countertenorB.wav countertenor B 0.998 2414.65
07_bass.wav bass singer 0.999 2623.81
08_male.wav male singer 0.980 1214.06
09_cello.wav violoncello 0.993 3463.88
10_saxophone.wav saxophone 0.875 19824.60
11_bassoon.wav bassoon 0.727 1408.48
12_doublebass.wav double bass 0.995 1388.46
13_frenchhorn.wav French horn 0.995 8712.90
14_piano.wav piano 0.997 4729.37
15_trumpet.wav trumpet 0.998 70607.98
16_crash.wav crash cymbal 0.146 1629.64

5.2.2.1 Compression

The compression rate of the representation introduced in Section 3.4 cannot be

controlled: the predominant period T is defined by intrinsic characteristics of the original

harmoniccompression.firebaseapp.com
harmoniccompression.firebaseapp.com

140

discrete signal and is, thus, fixed.

Therefore, the encoding configurations for the traditional codecs were chosen in

order to generate files with sizes compatible with the ones generated by the proposed

compression algorithm.

For the MP3 format, a nominal bit rate of 8 kbit/s and a sampling rate of 8000

Hz were chosen. For the other two formats, no sampling rate reduction was necessary,

and the nominal bit rates were 4 kbit/s for the AAC format and 6 kbit/s for the Opus

format. Those settings resulted in measured bit rates of 9.680 kbit/s for the HC format,

8.659 kbit/s for the AAC format, 8 kbit/s for the MP3 format, and 7.518 kbit/s for the

Opus format.

The MP3 codec is operating in its most extreme compression condition, while

further compression could be achieved by reducing the sampling rate of the other two

traditional codecs.

It is important to note that those settings are considerably lower than the cus-

tomary settings used for encoding music signals, and were adopted to generate files with

similar sizes in disk. For the MP3 format, for example, a bit rate of at least 128 kbit/s is

generally used in normal conditions.

A table with information about individual bit rates for all the samples is available

at the repository dedicated to the algorithm (Tarjano, 2021), under the path github.

com/tesserato/compression/blob/main/004_results_HC/bitrates.csv.

Figure 51 presents, on the left plot, the sum of the compressed sizes of all 16 sound

files, for each codec. The right plot shows the average compression rate, calculated as the

ratio between the original size and the compressed size, for each codec, as well as the 95%

confidence interval around each average; this plot makes particularly clear the equivalence

of compression rates between the HC, MP3 and AAC codecs, with OPUS presenting a

slightly higher compression rate.

github.com/tesserato/compression/blob/main/004_results_HC/bit rates.csv
github.com/tesserato/compression/blob/main/004_results_HC/bit rates.csv

141

HC MP3 AAC OPUS
0

20

40

60

80

100

120

HC MP3 AAC OPUS
0

20

40

60

80

100
Total compressed size (bytes) Average compression rate

Figure 51: The left plot shows the total size of the 16 compressed samples (lower values
are better). The right plot shows the average compression rate and the 95% confidence
interval around the average (higher values are better).

5.2.2.2 Timing

The implementation was designed with a focus on maintaining the decoding step

as fast as possible, to maximize the real-time performance of the algorithm. In the context

of sample-based digital musical instruments, the encoding occurs only once, and generally

takes place in more robust hardware than the one used for decoding; it is more important

to streamline as much as possible the decoding effort, since, besides enabling the use of

more affordable hardware, this task is normally performed a far greater number of times.

For the timing tests, the 16 original samples were encoded and decoded 1000 times

with each of the 4 codecs, using the procedure described in Section 5.2. The hardware

used was an AMD Ryzen 7 laptop, running Windows 10 operating system.

The average encoding and decoding times, in milliseconds, are presented in Figure

52, alongside a 95% confidence interval around the average. For digital musical instru-

ments, it is important to maintain latency below 10 milliseconds, since that is the limit

above which users start to experience performance degradation (Wessel et al., 2002). It

can be seen that the proposed algorithm presents the lowest decoding times, at the cost

of the highest encoding times; about 3 times the MP3 codec, to approximately 1.5 times

the time of the OPUS codec.

142

HC MP3 AAC OPUS
0

100

200

300

400

HC MP3 AAC OPUS

1000 Iterations
M

ill
ise

co
nd

s

Average Compression Time Average Decompression Time

Figure 52: Average encoding (left) and decoding (right) times for the 4 codecs, within a
95% confidence interval. Lower values are better.

5.2.2.3 Quality

For each compression algorithm, the MSE between the compressed and original

signal is presented in the left plot of Figure 53, along with a 95% confidence interval

around the mean. This metric serves as a proxy for the overall quality of the segmentation

algorithm, since all the features extracted — amplitudes, length of pseudo cycles, and the

basis waveform — are used in the reconstruction of the original signal and contribute to

the MSE.

The right plot in Figure 53 shows the AAE and the 95% confidence interval between

the power spectra of the original and the compressed representation, and is important

to mitigate eventual shifts in the time-domain position of the compressed digital signal

introduced by the compression algorithms.

143

HC MP3 AAC OPUS
0

0.05

0.1

0.15

0.2

HC MP3 AAC OPUS
0

50μ

100μ

150μ

200μ

Time domain - average MSE Freq. domain - average absolute error

Figure 53: Average Mean Squared Error in the time domain (left) and Average Absolute
Error in the frequency (right) for the 4 codecs, within a 95% confidence interval. Lower
values are better.

Besides objective metrics shown in Figure 53, directly linked to the quality of the

segmentation algorithm, a more extensive investigation of the HC codec can help identify

potential applications of the proposed method, especially in signal compression.

Estimating the general quality of a compression algorithm is a complex task, that

would ideally rely on subjective listening tests. The International Telecommunication

Union’s Radiocommunication (ITU-R) offers guidelines for such tests in the form of the

Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) methodology (ITU-R,

2014).

Even those tests, however, are not immune to systematic errors, that can contribute

to as much as 40% of the attributed score (Zielinski et al., 2008), leading them to be less

effective as an absolute measure of general quality (Zielinski, 2016).

As an alternative, libraries were developed to simulate the results of those tests

directly from the comparison of the degraded signals against their source. Since the aim

of the tests conducted in this work is to investigate the applicability of the segmentation

algorithm in a practical setting, the use of simulated listening tests is reasonable.

The Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2002; Beerends et

al., 2002) and its successor Perceptual Objective Listening Quality Assessment (POLQA)

(Beerends et al., 2013) are two of such methodologies, standardized by the ITU-R with

144

the objective of serving as a consistent alternative to listening tests.

Initially designed inside Google as an alternative to POLQA for Voice over Internet

Protocol (VoIP) quality assessment (Hines et al., 2015b), the Virtual Speech Quality

Objective Listener (ViSQOL) library rapidly received a general audio mode (Hines et

al., 2015a). Since results obtained with this library are comparable with results from

the Perceptual Evaluation of Audio Quality (PEAQ) and POLQA libraries (Sloan et al.,

2017), and an open-source implementation, now in its third version, is available via a

GitHub repository (Chinen et al., 2020), the ViSQOL library is used in this work to

further evaluate the compressed signals.

This library comes pre-trained with data from real perceptual tests, and emits a

MOS-LQO score ranging from 1 (the worst grade) to 5 (the best grade) when comparing

a degraded signal with the original signal from which it was derived.

We divide the tests into two groups, according to the library’s modes: voice, for

the first 8 signals shown in Table 6, and audio for the last 8. Figure 54 presents the

average MOS-LQO score obtained by each group, using Google’s ViSQOL library, as well

as their 95% confidence interval.

HC MP3 AAC OPUS
0

1

2

3

4

HC MP3 AAC OPUS

MOS-LQO speech mode MOS-LQO audio mode

Figure 54: Average MOS-LQO scores for the speech (left) and audio (right) modes, for
the 4 codecs, within a 95% confidence interval. Higher values are better.

Listening to the compressed results, as presented in harmoniccompression.firebaseapp.

com, can provide insight beyond the metrics presented.

harmoniccompression.firebaseapp.com
harmoniccompression.firebaseapp.com

145

For the soprano A and B samples, the HC codec presents results very close to the

original signal. MP3 results are also close to the original, albeit less clear than the HC

compressed signal.

For the mezzo-soprano signal, the HC codec introduces a synthetic feel to the in-

tense vibrato articulation. This makes the MP3 compression signal more realistic, despite

the muffled quality introduced.

The baritone and countertenor A signals, compressed with the HC codec, are

indistinguishable from the original. MP3 results for those two signals are very close to

the original, but less clear in comparison.

Both the HC and the MP3 compressed signals for the countertenor B and the bass

Singer signals are indistinguishable from the original samples. The male singer signals

compressed with those two codecs are also very close to the original.

For all the 8 voice signals tested, the AAC and Opus codecs present very low

perceptual quality in such an extreme regimen, with the files compressed with the AAC

codec guarding only a resemblance with the original. Opus encoded files are generally

ridden with clicks and artifacts.

This general pattern, observed above in the case of voice samples, persists in the

context of instrument signals. MP3 encoding seems perceptually better than the HC

encoding only when the sound is characterized by a percussive part, as is the case of

the very beginning of the piano signal. Highly inharmonic signals, however, seem to be

detrimental to all algorithms, as can be seen in the poor results of the compression of the

crash signal with all codecs.

By listening to the compressed results, one can empirically infer a harmonicity

threshold above approximately 0.85 for the HC codec: signals above that value suffer

a minimal quality loss during encoding. The result of compressing the crash cymbal

signal suggests that, on the other hand, encoding samples with harmonicity below 0.5

renders unintelligible results. Overall, the results suggest the potential of the algorithm

in sample-based synthesis and domain-specific lossy compression.

5.3 QUALITY OF THE PLUGIN

As seen in Section 5.2 it is already difficult to evaluate the quality of static sound

samples. To objectively assess the quality of digital musical instruments, with all their

possible dynamics and intricacies, is even harder. Ideally, one would conduct tests with a

great number of users, collecting their opinion about different aspects of the instruments,

146

and possibly comparing those with other similar instruments.

Since this approach would extrapolate the resources and the time available for the

development of the present work, the preceding sections tried to evaluate, as objectively

as possible, the most important theoretical components of the current plugin in isolation.

In the first subsection of the current section, however, we analyze the quality of

the whole plugin, by examining the behavior of the errors of each network that serves as

the engine of the instruments presented.

As a means to complement those observations, the second subsection comments

on the characteristics of the plugin using its piano engine, in comparison with other piano

implementations found in the market.

The reader can also draw its own conclusions, either by downloading and testing

the implementations available at the website dedicated to this work (Tarjano, 2022), or

by listening to the available pre-recorded performances available there.

5.3.1 Analysis of the errors of the networks

In Section 4.3, where the training process of the networks is presented, it was

explained that, due to computational constraints, the average MSE of two sets of 200

network outputs, one deterministic and one random, were used to keep track of the net-

work performance. Table 3 in Section 4.4 presents the minimum deterministic error for

the networks at the core of the trained instruments.

Similarly, in this section, Table 7 presents the average of all MSE, beside other

statistical information, for each trained neural network behind the instruments. As can

be seen in the column that shows the time, in seconds, of the whole process, this measure

is extremely time-intensive to derive in average hardware, rendering it impractical to

execute at each epoch during the training process, and motivating the sampling approach

described in Section 4.4. The total processing time needed to calculate all the MSE errors

for the networks that are shown in the table exceeds 7 hours.

The measures presented in Table 7 are derived from a vector created with all the

MSE errors of each network. Each entry in those vectors represents the MSE between

one of the network’s outputs and its respective target, in the time domain.

For each trained instrument, Table 7 presents the average of this vector, that is,

the average of all MSE errors, where a single MSE is obtained from the comparison of an

original pseudo cycle and its reconstructed version.

In the following columns, the maximum and minimum MSEs are also presented.

147

Their variance is shown in the following column, and the time required to calculate all

MSEs is shown in the next column. The last column of the table shows the total number

of pseudo cycles in which the original library was segmented, corresponding to the total

number of MSEs calculations performed.

Table 7: Name and statistics of the totality of errors of the final networks used as in-
strument engines. After the name of each instrument, the subsequent columns show the
average, maximum value, minimum value, and variance of the MSEs. The following col-
umn shows the calculation time, in seconds, and the last column shows the number of
pseudo cycles.

Name Ave Max Min Var Time (s) N
Metavox 0.0504 0.6714 0.0101 0.0020 2618 125313
SteinwayB 0.0663 0.9167 0.0122 0.0029 2297 111796
Voice 0.0723 0.9655 0.0140 0.0033 2885 177658
Vox 0.0882 0.9659 0.0105 0.0041 5571 302971
Violin 0.0924 0.6566 0.0149 0.0025 1529 84372
SteinwayD 0.1182 0.9799 0.0131 0.0079 10865 562576
Guitar 0.1863 0.8774 0.0140 0.0261 189 9873

From Table 7 some insights can be derived. Considering that the time-domain

representation of both the outputs and the targets of the networks are normalized between

-1.0 and 1.0 before the MSE calculation is performed, it is easy to see that the maximum

value possible for the MSE is 4.0. The maximum errors reported in Table 7, however,

never exceed 1.0, and are less than 0.7 in the Vox and Violin cases. The table also shows

that the average errors are in general close to 0.1.

The error distribution can be better analyzed in Figure 55, where the frequency of

the MSE errors is shown, as well as their 50th percentiles (that are also their medians).

From the figure, it is readily noticeable that the average error measure in Table 7 can be

misleading, as the majority of errors, for all instruments, are less than 0.1, making the

values of the 50th percentiles always lower than the averages.

From Figure 55 it can also be seen that large errors, with values above approxi-

mately 0.3 are, in general, very rare.

148

0

490

0

24.31k

0

19.634k

0

40.926k

0

6174

0

25.992k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

31.322k

Number of occurrences 50th percentile

Error value

Guitar, 50th percentile=0.133

Metavox, 50th percentile=0.035

SteinwayB, 50th percentile=0.05

SteinwayD, 50th percentile=0.096

Violin, 50th percentile=0.083

Voice, 50th percentile=0.056

Vox, 50th percentile=0.071

Figure 55: Histogram of the MSE errors of the trained networks, as well as their respective
50th percentiles.

5.3.2 Comparison with available piano plugins

Given their importance in western music, on one hand, and their size and price,

on the other, pianos are the preferred candidates for emulation via digital plugins. For

that reason, an abundance of plugins, free and commercial, exist. Table 8 compares the

piano implementation presented in this work with the most prominent implementations

available. With the exception of Pianoteq 7, which uses physical synthesis to generate

the piano sounds, and of the Omnes Sonos plugin introduced in this work, all other

instruments in Table 8 rely on sample libraries and thus have their size on disk measured

in GBs.

The piano digital instrument presented in this work is considerably smaller than

the alternatives. Even when compared with Pianoteq 7, the second smaller piano, its

library size is approximately 1136 times smaller. Since they are not sample-based, both

149

Pianoteq 7 and the Omnes Sonos actually support a continuous velocity range, with the

127 layers limitation arising from the MIDI specification. It can be seen that, among the

sample-based instruments, the number of velocity layers is limited to a maximum of 100

in the case of the Vienna Imperial implementation, being as low as 12 in the Addictive

Keys Studio Grand.

Table 8: Comparison of the most prominent digital instruments that emulate a grand
piano. Adapted from Sluis (2022).
Name Vel Layers Size Mic Perspectives
Keyscape (Spectrasonics, 2022) 32 80 GB 1
Garritan CFX (Garritan, 2022) 20 123 GB 3
Vienna Imperial (Vienna Symphonic Library, 2022) 100 46.8 GB 3
Ravenscroft 275 (VI Labs, 2022) 19 5.32 GB 4
Pianoteq 7 (Modartt, 2022) 127 50 MB 5
Ivory II (Synthogy, 2022) 18 77 GB 1
Studio Grand (XLN Audio, 2022) 12 1.5 GB 6
Omnes Sonos (Tarjano, 2022) 127 44 KB 1

150

6 DISCUSSION

The research presented in this work was developed at the interface of two areas, AI

and DSP, that have a very pragmatic component. Generally speaking, progress in DSP is

informed by the desire of accomplishing objectives in related fields, such as the creation

of new instruments and sounds and the desire to better convey information, for instance.

Similarly, the field of AI and, more specifically, neural networks, was originally

motivated by the desire to understand the biological mechanisms of thought and con-

sciousness and, ultimately, implement them in artificial constructs.

To realize this bold endeavor, practitioners borrowed tools from diverse disciplines,

the most prominent of which are computer science and mathematics, from the very be-

ginning. This tendency became ingrained, it seems, in the innate approach of researchers

and practitioners in the field, and brought about incontestable advancements, marking

AI as interdisciplinary since its conception.

Recent progress in the field of neural networks is highlighted by an abundance of

impressive results, that have consolidated the approach of using advancements in related

disciplines to the betterment of neural networks theory in general, be it in the form of

CNNs, better hyperparameter search and parallel implementations, between numerous

other examples.

Paradoxically, however, neural networks are often applied to a problem with min-

imal concern about the representation used, outside the strictly necessary adaptations,

such as normalization. It is not uncommon to see works where the hasty application of

neural networks culminates in algorithms that could be streamlined if informed by the

common practices of the area of interest.

We feel that this tool still offers great potential in its current state of development,

a potential that will only be fully realized once it is understood that a more holistic

approach is needed, one that considers the problem of interest as a whole.

Furthermore, the resurgence of the interest in AI was largely motivated by hard-

ware and general infrastructure improvements. While it is undeniable that a great theo-

retical development was also obtained, it is not impossible that the interest will dwindle

once not propelled by the continuous advancement of the underlying hardware.

In the near future, therefore, the regimen of paradigm-shifting breakthroughs will

likely be replaced by one of incremental progress, where the current inefficiencies will

be the primary focus of research, and the foundation for the solutions will necessarily

151

lie outside the core theoretical framework of AI, in areas of intersection with traditional

disciplines.

Real-time sound synthesis is perhaps the field where this effect is currently more

present, since the challenges that will permeate this effort are more prominent: thousands

of meaningful data points need to be generated on-demand, often in constrained hardware

conditions. Algorithms that encapsulate those calculations in higher-level entities, such

as pseudo cycles, are one possible approach to mitigate this problem.

In other words, real-time sound synthesis is a complex task, that also draws inspira-

tion from, and demands a reasonable understanding of, a number of ancillary disciplines.

Traditionally, it begins with the design of a mathematical model based on a deep under-

standing of the physics underlying the instrument of interest. Like with neural networks,

one of the reasons for its complexity arises from the high dimensionality of the data

involved.

The area of AI, therefore, could benefit from tighter integration with more tradi-

tional areas, such as real-time sound synthesis. In practice, the general approach presented

here in the form of the Omnes Sonos plugin can be used to substitute the sample-based

virtual instruments currently representing the state of the art, with the advantage of

demanding considerably lower storage requirements.

This result has a deeper, ideological implication: its concreteness can perhaps

appeal to the more pragmatic nature of practitioners in both areas; by presenting an

algorithm where this multidisciplinary environment is considered from the very beginning,

this work hopes to promote the integration and cross-fertilization between all the fields

involved.

In other words, real-time sound synthesis is a complex task, that also draws inspira-

tion from, and demands a reasonable understanding of, a number of ancillary disciplines.

Traditionally, it begins with the design of a mathematical model based on a deep under-

standing of the physics underlying the instrument of interest. Like with neural networks,

one of the reasons for its complexity arises from the high dimensionality of the data

involved.

The area of AI, therefore, could benefit from tighter integration with more tradi-

tional areas, such as real-time sound synthesis. In practice, the general approach presented

here in the form of the Omnes Sonos plugin can be used to substitute the sample-based

virtual instruments currently representing the state of the art, with the advantage of

demanding considerably lower storage requirements.

152

This result has a deeper, ideological implication: its concreteness can perhaps

appeal to the more pragmatic nature of practitioners in both areas; by presenting an

algorithm where this multidisciplinary environment is considered from the very beginning,

this work hopes to promote the integration and cross-fertilization between all the fields

involved.

6.1 CONCLUSION

The concrete contribution of this work in the form of the Omnes Sonos plugin,

and the multiple libraries made available, representing a gamut of instruments and the

singing voice, demonstrate the feasibility of using the proposed framework as the basis for

a flexible musical instrument, able to realistically emulate existing real-world instruments

and the singing voice, in real time.

This digital instrument provides evidence that virtual instruments generating re-

alistic sounds in real-time do not need to necessarily rely on sample-based approaches, as

is the current consensus in the sound production community, and can perhaps motivate

a new wave of research in alternative models for sound synthesis.

The novel signal representation — used to encode the samples used to train the

neural networks that serve as the instrument’s engine — embodies the theoretical ad-

vancements that enabled the success of the digital instrument’s implementation.

As noted, while developing this new, neural-networks-friendly, signal representa-

tion, two deep gaps in classical DSP literature were identified: those two chasms were the

lack of an appropriate envelope detection approach for broadband digital signals and the

lack of a general signal segmentation methodology.

To solve those problems, this work adopted a multidisciplinary approach, unrav-

eling related theoretical and practical gaps in the field of DSP and other sound-related

areas, with inspiration from fields such as computational geometry and harmonic analysis.

As a result, multiple auxiliary algorithms and theories were developed — such as a

new envelope detection algorithm, a pseudo cycles focused signal segmentation algorithm,

a novel discrete curvature estimation method and a lossy compression codec — with the

ultimate aim of introducing a neural-networks-friendly representation of discrete signals,

flexible enough to be the basis for a general framework for the real-time emulation of

pitched musical instruments and the singing voice.

While attacking the envelope detection problem, as presented in Section 3.3, this

work, following the paper in which the approach was first published (Tarjano et al.,

153

2022b), presents mathematical proofs of important theoretical guarantees of the proposed

method.

Albeit not directly indispensable to the representation that is the ultimate object

of the present work, this detour was made with the hope of contributing, in the future, to

a formal general mathematical definition of an envelope, one that accounts for broadband

signals.

Besides the introduction of a new envelope extraction method per se, its formula-

tion in terms of (differential) geometric concepts is, perhaps, as great a contribution as

the algorithm itself, in the sense that it encourages experimentations with theories foreign

to the traditional DSP viewpoint.

The work also contributes two methods for assessing the quality of an extracted

envelope, one intuitive, based on a graph of the original signal with its envelope removed,

that enables a quick visual assessment of how much it deviates from a signal with unitary

amplitude, and a formal method that provides a numerical measure of the envelope quality.

Those tools can be used to assess the quality of future envelope detection algo-

rithms, guiding upcoming research and helping in the classification of algorithms accord-

ing partly to the quality of their outputs.

The lack of a general segmentation algorithm was the second subproblem addressed

in this work. The solution proposed segments a quasi-periodic signal into its pseudo cycles:

meaningful building blocks that correspond to the patterns that repeat themselves in the

signal. Philosophically, this segmentation allows a new interpretation of digital signals, as

a simpler waveform evolving through time. Besides its importance in the implementation

of the Omnes Sound plugin, this work illustrated how this segmentation algorithm can be

used in lossy compression.

Although much was done during the elaboration of the present work, time con-

straints hindered some possible further developments. It is the author’s opinion that

sound results could be improved, perhaps significantly so, if the samples used to train the

different instruments could have received more attention, and could have been manually

treated individually. It is needless to mention that recording such samples, in accordance

with the necessities of the model, would have been an even more beneficial scenario.

The author also regrets the lack of time to further improve the implementation of

the segmentation algorithm, with provisions for a variable average period, for example,

and possibly a set of ad hoc checks. The lack of a wider range of freely available samples,

with the diversity and quality necessary, also prevented the training of a greater number

154

of musical instruments.

As for some of the limitations of the final model, it is important to note that

the representation exploits redundancy in quasi-periodic signals, and is thus tailored to

musical sounds that exhibit a defined dominant frequency. Although those requirements

are very liberal, the approach is not designed for the emulation of percussive instruments,

such as drums and cymbals.

Digital musical acoustics borrows heavily from the digital signal processing termi-

nology, the latter having its roots in the analog world. Many algorithms are conceived

in terms of filters, circuits, and other similar analog constructs, a fact that biases the

conceptual, theoretical framework of the area towards specific strategies.

By developing the present work with an open-minded approach, this dissertation

suggests paths of communication with various ancillary disciplines, pointing to multiple

routes for future developments, and tries to renovate the area, potentially inspiring further

research on unorthodox approaches for solving DSP problems.

155

REFERENCES

AHO, Marko. “Almost like the real thing”: how does the digital simulation of musical

instruments influence musicianship? Music Performance Research, Royal Northern

College of Music, v. 3, p. 22–35, 2009.

AIORDACHIOAIE, Dorel; POPESCU, Theodor Dan. VIBROCHANGE—a

development system for condition monitoring based on advanced techniques of signal

processing. The International Journal of Advanced Manufacturing Technology,

Springer Science and Business Media LLC, v. 105, n. 1-4, p. 919–936, Aug. 2019. DOI:

10.1007/s00170-019-04255-3.

ALESSIO, Silvia Maria. Digital Signal Processing and Spectral Analysis for

Scientists. Switzerland: Springer International Publishing, 2016. DOI:

10.1007/978-3-319-25468-5.

AMIDROR, Isaac. Mastering The Discrete Fourier Transform In One Two Or

Several Dimensions: Pitfalls And Artifacts. London: Springer London Ltd, 2013.

ISBN 9781447151661.

ANDREÃO, Rodrigo Varejão; DORIZZI, Bernadette; BOUDY, Jérôme. ECG signal

analysis through hidden Markov models. IEEE Transactions on Biomedical

Engineering, Institute of Electrical and Electronics Engineers (IEEE), v. 53, n. 8,

p. 1541–1549, Aug. 2006. DOI: 10.1109/tbme.2006.877103.

ASSEF, Amauri Amorin; FERREIRA, Breno Mendes; MAIA, Joaquim Miguel;

COSTA, Eduardo Tavares. Modeling and FPGA-based implementation of an efficient

and simple envelope detector using a Hilbert Transform FIR filter for ultrasound

imaging applications. Research on Biomedical Engineering, FapUNIFESP

(SciELO), v. 34, n. 1, p. 87–92, Jan. 2018. DOI: 10.1590/2446-4740.02417.

BANK, Balazs; CHABASSIER, Juliette. Model-Based Digital Pianos: From Physics to

Sound Synthesis. IEEE Signal Processing Magazine, Institute of Electrical and

Electronics Engineers (IEEE), v. 36, n. 1, p. 103–114, Jan. 2019. DOI:

10.1109/msp.2018.2872349.

https://doi.org/10.1007/s00170-019-04255-3
https://doi.org/10.1007/978-3-319-25468-5
https://doi.org/10.1109/tbme.2006.877103
https://doi.org/10.1590/2446-4740.02417
https://doi.org/10.1109/msp.2018.2872349

156

BEERENDS, John G.; HEKSTRA, Andries P.; RIX, Antony W.; HOLLIER, Michael P.

Perceptual Evaluation of Speech Quality (PESQ) The New ITU Standard for

End-to-End Speech Quality Assessment Part II: Psychoacoustic Model. Journal of the

Audio Engineering Society, v. 50, n. 10, p. 765–778, 2002. Available from:

<http://www.aes.org/e-lib/browse.cfm?elib=11062>.

BEERENDS, John G.; OBERMANN, Matthias; ULLMANN, Raphael;

POMY, Joachim; KEYHL, Michael. Perceptual Objective Listening Quality Assessment

(POLQA), The Third Generation ITU-T Standard for End-to-End Speech Quality

Measurement Part II–Perceptual Model. Journal of the Audio Engineering

Society, v. 61, n. 6, p. 18, 2013.

BERG, Mark de; CHEONG, Otfried; KREVELD, Marc van; OVERMARS, Mark.

Computational Geometry: Algorithms and Applications. Berlin: Springer Berlin

Heidelberg, 2008. DOI: 10.1007/978-3-540-77974-2.

BIRD, Sarah; DZHULGAKOV, Dmytro. ONNX V1 released. 6 Dec. 2017. Available

from: <https://research.facebook.com/blog/2017/12/onnx-v1-released/>.

Visited on: 10 Apr. 2022.

BIRKHOFF, Garrett. Integration of functions with values in a Banach space.

Transactions of the American Mathematical Society, American Mathematical

Society (AMS), v. 38, n. 2, p. 357–378, 1935. DOI:

10.1090/s0002-9947-1935-1501815-3.

BONADA, J.; SERRA, X.; AMATRIAIN, X.; LOSCOS, A. Spectral Processing. In:

DAFX: Digital Audio Effects. New Jersey, United States: John Wiley & Sons, Inc., 2011.

chap. 10, p. 393–445. ISBN 9781119991298. DOI:

https://doi.org/10.1002/9781119991298.ch10.

BOVERMANN, Till; CAMPO, Alberto de; EGERMANN, Hauke;

HARDJOWIROGO, Sarah-Indriyati; WEINZIERL, Stefan (Eds.). Musical

Instruments in the 21st Century. Singapore: Springer Singapore, 2017. DOI:

10.1007/978-981-10-2951-6.

http://www.aes.org/e-lib/browse.cfm?elib=11062
https://doi.org/10.1007/978-3-540-77974-2
https://research.facebook.com/blog/2017/12/onnx-v1-released/
https://doi.org/10.1090/s0002-9947-1935-1501815-3
https://doi.org/https://doi.org/10.1002/9781119991298.ch10
https://doi.org/10.1007/978-981-10-2951-6

157

BOYD, Eric. Microsoft and Facebook create open ecosystem for AI model

interoperability. 7 Sept. 2017. Available from:

<https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-

open-ecosystem-for-ai-model-interoperability/>. Visited on: 10 Apr. 2022.

BRACEWELL, Ronald Newbold. The Fourier transform and its applications.

New York, United States: McGraw Hill, 2000. p. 616. ISBN 0073039381.

BRITANAK, Vladimir; RAO, K. R. Audio Coding Standards, (Proprietary) Audio

Compression Algorithms, and Broadcasting/Speech/Data Communication Codecs:

Overview of Adopted Filter Banks. In: COSINE-/SINE-MODULATED Filter Banks.

Cham: Springer International Publishing, 2018. chap. 2, p. 13–37. ISBN

978-3-319-61078-8 978-3-319-61080-1. DOI: 10.1007/978-3-319-61080-1_2. Visited on:

3 Mar. 2021.

BRUCE, J. W.; GIBLIN, P. J. Curves and Singularities. Cambridge: Cambridge

University Press, Aug. 1992. 340 pp. ISBN 0521429994. DOI:

https://doi.org/10.1017/CBO9781139172615.

BRUNEAU, Michel. Fundamentals of acoustics. London Newport Beach, CA: ISTE

Ltd, 2006. ISBN 9780470612439.

BUTTERWORTH, Stephen et al. On the theory of filter amplifiers. Wireless

Engineer, v. 7, n. 6, p. 536–541, 1930.

CAETANO, Marcelo; RODET, Xavier. Improved estimation of the amplitude envelope

of time-domain signals using true envelope cepstral smoothing. In: 2011 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague,

Czech Republic: IEEE, May 2011. DOI: 10.1109/icassp.2011.5947290.

CALHOUN, Jon; CAPPELLO, Franck; OLSON, Luke N; SNIR, Marc;

GROPP, William D. Exploring the feasibility of lossy compression for PDE simulations.

The International Journal of High Performance Computing Applications,

v. 33, n. 2, p. 397–410, Mar. 2019. ISSN 1094-3420, 1741-2846. DOI:

10.1177/1094342018762036. Available from:

https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/
https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/
https://doi.org/10.1007/978-3-319-61080-1_2
https://doi.org/https://doi.org/10.1017/CBO9781139172615
https://doi.org/10.1109/icassp.2011.5947290
https://doi.org/10.1177/1094342018762036

158

<http://journals.sagepub.com/doi/10.1177/1094342018762036>. Visited on: 3

Mar. 2021.

CÁNOVAS, Rodrigo; MOFFAT, Alistair; TURPIN, Andrew. Lossy compression of

quality scores in genomic data. Bioinformatics, v. 30, n. 15, p. 2130–2136, Aug. 2014.

ISSN 1460-2059, 1367-4803. DOI: 10.1093/bioinformatics/btu183. Available from:

<https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btu183>. Visited on: 3 Mar. 2021.

CARBONELL, J. G.; SIEKMANN, J. (Eds.). Music and Artificial Intelligence.

Berlin: Springer Berlin Heidelberg, 28 Aug. 2002. 220 pp. ISBN 354044145X. Available

from: <https://www.ebook.de/de/product/7083376/music_and_artificial_

intelligence.html>.

CARROLL, Daniel; HANKINS, Eleanor; KOSE, Emek; STERLING, Ivan. A Survey of

the Differential Geometry of Discrete Curves. The Mathematical Intelligencer,

Springer Science and Business Media LLC, v. 36, n. 4, p. 28–35, Oct. 2014. DOI:

10.1007/s00283-014-9472-2.

CECCHERINI-SILBERSTEIN, Tullio; SCARABOTTI, Fabio; TOLLI, Filippo.

Discrete Harmonic Analysis. Cambridge: Cambridge University Press, June 2018.

DOI: 10.1017/9781316856383.

CHEN, Yi-Chen; HUANG, Sung-Feng; LEE, Hung-yi; WANG, Yu-Hsuan;

SHEN, Chia-Hao. Audio Word2vec: Sequence-to-Sequence Autoencoding for

Unsupervised Learning of Audio Segmentation and Representation. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, Institute of Electrical

and Electronics Engineers (IEEE), v. 27, n. 9, p. 1481–1493, Sept. 2019. DOI:

10.1109/taslp.2019.2922832.

CHEN, Wenlin; WILSON, James; TYREE, Stephen; WEINBERGER, Kilian Q.;

CHEN, Yixin. Compressing Convolutional Neural Networks in the Frequency Domain.

In: KDD ’16: THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON

KNOWLEDGE DISCOVERY AND DATA MINING. Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. San Francisco California USA: ACM, Aug. 2016. p. 1475–1484. ISBN

http://journals.sagepub.com/doi/10.1177/1094342018762036
https://doi.org/10.1093/bioinformatics/btu183
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu183
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu183
https://www.ebook.de/de/product/7083376/music_and_artificial_intelligence.html
https://www.ebook.de/de/product/7083376/music_and_artificial_intelligence.html
https://doi.org/10.1007/s00283-014-9472-2
https://doi.org/10.1017/9781316856383
https://doi.org/10.1109/taslp.2019.2922832

159

978-1-4503-4232-2. DOI: 10.1145/2939672.2939839. Available from:

<https://dl.acm.org/doi/10.1145/2939672.2939839>. Visited on: 3 Mar. 2021.

CHINEN, Michael; LIM, Felicia S. C.; SKOGLUND, Jan; GUREEV, Nikita;

O’GORMAN, Feargus; HINES, Andrew. ViSQOL v3: An Open Source Production

Ready Objective Speech and Audio Metric. arXiv:2004.09584 [cs, eess], Apr. 2020.

arXiv: 2004.09584. Available from: <http://arxiv.org/abs/2004.09584>. Visited

on: 17 Mar. 2021.

CLELLAND, Jeanne N.; VASSILIOU, Peter J. Strings attached: New light on an old

problem. arXiv, 2013. DOI: 10.48550/ARXIV.1302.6672.

COEURJOLLY, David; MIGUET, Serge; TOUGNE, Laure. Discrete Curvature Based

on Osculating Circle Estimation. In: LECTURE Notes in Computer Science. Berlin:

Springer Berlin Heidelberg, 2001. p. 303–312. DOI: 10.1007/3-540-45129-3_27.

COLLINS, Nick; D’ESCRIVAN, Julio (Eds.). The Cambridge Companion to

Electronic Music. Cambridge: Cambridge University Press, Dec. 2007. DOI:

10.1017/ccol9780521868617.

COLONNA, Juan Gabriel; CRISTO, Marco; SALVATIERRA, Mario;

NAKAMURA, Eduardo Freire. An incremental technique for real-time bioacoustic

signal segmentation. Expert Systems with Applications, Elsevier BV, v. 42, n. 21,

p. 7367–7374, Nov. 2015. DOI: 10.1016/j.eswa.2015.05.030.

CONDON, E. U. Clubs and Allied Activities. The American Mathematical

Monthly, Informa UK Limited, v. 49, n. 5, p. 330–335, May 1942. DOI:

10.1080/00029890.1942.11991234.

CONKLIN, Harold A. Design and tone in the mechanoacoustic piano. Part I. Piano

hammers and tonal effects. The Journal of the Acoustical Society of America,

Acoustical Society of America (ASA), v. 99, n. 6, p. 3286–3296, June 1996. DOI:

10.1121/1.414947.

https://doi.org/10.1145/2939672.2939839
https://dl.acm.org/doi/10.1145/2939672.2939839
https://arxiv.org/abs/2004.09584
http://arxiv.org/abs/2004.09584
https://doi.org/10.48550/ARXIV.1302.6672
https://doi.org/10.1007/3-540-45129-3_27
https://doi.org/10.1017/ccol9780521868617
https://doi.org/10.1016/j.eswa.2015.05.030
https://doi.org/10.1080/00029890.1942.11991234
https://doi.org/10.1121/1.414947

160

CONKLIN, Harold A. Design and tone in the mechanoacoustic piano. Part II. Piano

structure. The Journal of the Acoustical Society of America, Acoustical Society

of America (ASA), v. 100, n. 2, p. 695–708, Aug. 1996. DOI: 10.1121/1.416233.

. Design and tone in the mechanoacoustic piano. Part III. Piano strings and

scale design. The Journal of the Acoustical Society of America, Acoustical Society

of America (ASA), v. 100, n. 3, p. 1286–1298, Sept. 1996. DOI: 10.1121/1.416017.

COOLEY, James W. The re-discovery of the fast Fourier transform algorithm.

Mikrochimica Acta, Springer Science and Business Media LLC, v. 93, n. 1-6,

p. 33–45, Jan. 1987. DOI: 10.1007/bf01201681.

COOLEY, James W.; TUKEY, John W. An algorithm for the machine calculation of

complex Fourier series. Mathematics of Computation, American Mathematical

Society (AMS), v. 19, n. 90, p. 297–301, 1965. DOI:

10.1090/s0025-5718-1965-0178586-1.

COULSON, Charles Alfred. Waves: A mathematical approach to the common

types of wave motion: A Mathematical Approach to the Common Types of Wave

Motion (Longman Mathematical Texts). London: Longman Group United Kingdom,

1977. p. 240. ISBN 9780582449541.

CUNNINGHAM, Stuart; GROUT, Vic. Data reduction of audio by exploiting musical

repetition. Multimedia Tools and Applications, v. 72, n. 3, p. 2299–2320, Oct.

2014. ISSN 1380-7501, 1573-7721. DOI: 10.1007/s11042-013-1504-y. Available from:

<http://link.springer.com/10.1007/s11042-013-1504-y>. Visited on: 3 Mar.

2021.

CUNNINGHAM, Stuart; MCGREGOR, Iain. Subjective Evaluation of Music

Compressed with the ACER Codec Compared to AAC, MP3, and Uncompressed PCM.

International Journal of Digital Multimedia Broadcasting, v. 2019, p. 1–16,

July 2019. ISSN 1687-7578, 1687-7586. DOI: 10.1155/2019/8265301. Available from:

<https://www.hindawi.com/journals/ijdmb/2019/8265301/>. Visited on: 3 Mar.

2021.

https://doi.org/10.1121/1.416233
https://doi.org/10.1121/1.416017
https://doi.org/10.1007/bf01201681
https://doi.org/10.1090/s0025-5718-1965-0178586-1
https://doi.org/10.1007/s11042-013-1504-y
http://link.springer.com/10.1007/s11042-013-1504-y
https://doi.org/10.1155/2019/8265301
https://www.hindawi.com/journals/ijdmb/2019/8265301/

161

D’ALEMBERT, Jean le Rond. Eléments de musique théorique et pratique

suivant les principes de M. Rameau. Paris: David, 1752. Available from:

<https://books.google.com.br/books?id=w1yCDmFqjqYC>.

D’ANGELO, John P. Hermitian Analysis. New York: Springer New York, 2013. DOI:

10.1007/978-1-4614-8526-1.

DAU, Torsten. Speech perception and auditory disorders. Ballerup: Danavox

Jubilee Foundation, 2012. ISBN 9788799001330.

DEMIDOV, S. S. The study of partial differential equations of the first order in the 18th

and 19th centuries. Archive for History of Exact Sciences, Springer Science and

Business Media LLC, v. 26, n. 4, p. 325–350, 1982. DOI: 10.1007/bf00418753.

DESSEIN, Arnaud; CONT, Arshia. An Information-Geometric Approach to Real-Time

Audio Segmentation. IEEE Signal Processing Letters, Institute of Electrical and

Electronics Engineers (IEEE), v. 20, n. 4, p. 331–334, Apr. 2013. DOI:

10.1109/lsp.2013.2247039.

DIDEROT, Denis; ROND D’ALEMBERT, Jean le (Eds.). Encyclopédie, ou

dictionnaire raisonné des sciences, des arts et des métiers, etc. University of

Chicago: ARTFL Encyclopédie Project. Chicago: University of Chicago, 2021. Available

from: <https://encyclopedie.uchicago.edu/>.

DINES, L. L. On Convexity. The American Mathematical Monthly, Informa UK

Limited, v. 45, n. 4, p. 199–209, Apr. 1938. DOI: 10.1080/00029890.1938.11990794.

DIVISION, National Communications System (U.S.). Technology & Standards;

SERVICE, United States. General Services Administration. Information Technology.

Telecommunications: Glossary of Telecommunication Terms. United States:

General Services Administration, Information Technology Service, 1996. (Federal

standard). Available from:

<https://books.google.com.br/books?id=RIrPtQEACAAJ>.

DOLAN, Emily I. The Orchestral Revolution. Cambridge: Cambridge University

Press, 2013. DOI: 10.1017/cbo9781139235976.

https://books.google.com.br/books?id=w1yCDmFqjqYC
https://doi.org/10.1007/978-1-4614-8526-1
https://doi.org/10.1007/bf00418753
https://doi.org/10.1109/lsp.2013.2247039
https://encyclopedie.uchicago.edu/
https://doi.org/10.1080/00029890.1938.11990794
https://books.google.com.br/books?id=RIrPtQEACAAJ
https://doi.org/10.1017/cbo9781139235976

162

DOMINGUEZ, Alejandro. Highlights in the History of the Fourier Transform. IEEE

Pulse, Institute of Electrical and Electronics Engineers (IEEE), v. 7, n. 1, p. 53–61,

Jan. 2016. DOI: 10.1109/mpul.2015.2498500.

DONAHUE, Chris; MCAULEY, Julian; PUCKETTE, Miller. Adversarial Audio

Synthesis. In: INTERNATIONAL CONFERENCE ON LEARNING

REPRESENTATIONS. International Conference on Learning Representations.

New Orleans: ICLR, 2019. Available from:

<https://openreview.net/forum?id=ByMVTsR5KQ>.

DONGARRA, J.; SULLIVAN, F. Guest Editors Introduction to the top 10 algorithms.

Computing in Science & Engineering, Institute of Electrical and Electronics

Engineers (IEEE), v. 2, n. 1, p. 22–23, Jan. 2000. DOI: 10.1109/mcise.2000.814652.

DONOVAN, Tristan. Replay: the history of video games. East Sussex, England:

Yellow Ant, 2010. ISBN 9780956507228.

DOZAT, Timothy. Incorporating Nesterov Momentum into Adam. In:

INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS.

International Conference on Learning Representations. San Juan, Puerto Rico:

ICLR, 2016. Available from:

<https://cs229.stanford.edu/proj2015/054_report.pdf>.

DRIEDGER, Jonathan; MULLER, Meinard; EWERT, Sebastian. Improving Time-Scale

Modification of Music Signals Using Harmonic-Percussive Separation. IEEE Signal

Processing Letters, Institute of Electrical and Electronics Engineers (IEEE), v. 21,

n. 1, p. 105–109, Jan. 2014. DOI: 10.1109/LSP.2013.2294023.

DUCHI, John; HAZAN, Elad; SINGER, Yoram. Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization. J. Mach. Learn. Res., JMLR.org,

v. 12, null, p. 2121–2159, July 2011. ISSN 1532-4435. Available from:

<https://dl.acm.org/doi/10.5555/1953048.2021068>.

EDELSBRUNNER, H.; KIRKPATRICK, D.; SEIDEL, R. On the shape of a set of

points in the plane. IEEE Transactions on Information Theory, Institute of

https://doi.org/10.1109/mpul.2015.2498500
https://openreview.net/forum?id=ByMVTsR5KQ
https://doi.org/10.1109/mcise.2000.814652
https://cs229.stanford.edu/proj2015/054_report.pdf
https://doi.org/10.1109/LSP.2013.2294023
https://dl.acm.org/doi/10.5555/1953048.2021068

163

Electrical and Electronics Engineers (IEEE), v. 29, n. 4, p. 551–559, July 1983. DOI:

10.1109/tit.1983.1056714.

EDELSBRUNNER, Herbert; MÜCKE, Ernst P. Three-dimensional alpha shapes. ACM

Transactions on Graphics (TOG), Association for Computing Machinery (ACM),

v. 13, n. 1, p. 43–72, Jan. 1994. DOI: 10.1145/174462.156635.

ENGEL, Jesse; AGRAWAL, Kumar Krishna; CHEN, Shuo; GULRAJANI, Ishaan;

DONAHUE, Chris; ROBERTS, Adam. GANSynth: Adversarial Neural Audio Synthesis.

In. Available from: <https://openreview.net/pdf?id=H1xQVn09FX>.

ENGEL, Jesse; RESNICK, Cinjon; ROBERTS, Adam; DIELEMAN, Sander;

ECK, Douglas; SIMONYAN, Karen; NOROUZI, Mohammad. Neural Audio Synthesis of

Musical Notes with WaveNet Autoencoders, 5 Apr. 2017. arXiv: 1704.01279 [cs.LG].

ERSOY, Okan K; HU, Neng-Chung. Fast algorithms for the real discrete Fourier

transform. Department of Electrical and Computer Engineering Technical

Reports. Paper 591. Purdue University, 1988. Available from:

<https://docs.lib.purdue.edu/ecetr/591/>.

FAIR. PyTorch. 2016. Available from: <https://pytorch.org/>. Visited on: 11 Apr.

2022.

FLEISCHMANN, Oliver; WIETZKE, Lennart; SOMMER, Gerald. A Novel Curvature

Estimator for Digital Curves and Images. In: LECTURE Notes in Computer Science.

Berlin: Springer Berlin Heidelberg, 2010. p. 442–451. DOI:

10.1007/978-3-642-15986-2_45.

FLETCHER, Neville. The physics of musical instruments. New York: Springer,

1998. ISBN 9780387216034.

FOURIER, Jean-Baptiste Joseph. Théorie analytique de la chaleur. Paris: Chez

Firmin Didot, père et fils, 1822. Available from:

<https://books.google.com.br/books?id=TDQJAAAAIAAJ>.

FRANCK, Andreas; VALIMAKI, Vesa. An ideal integrator for higher-order integrated

wavetable synthesis. In: 2013 IEEE International Conference on Acoustics, Speech and

https://doi.org/10.1109/tit.1983.1056714
https://doi.org/10.1145/174462.156635
https://openreview.net/pdf?id=H1xQVn09FX
https://arxiv.org/abs/1704.01279
https://docs.lib.purdue.edu/ecetr/591/
https://pytorch.org/
https://doi.org/10.1007/978-3-642-15986-2_45
https://books.google.com.br/books?id=TDQJAAAAIAAJ

164

Signal Processing. Vancouver, BC, Canada: IEEE, May 2013. DOI:

10.1109/icassp.2013.6637605.

FRENCH, Richard Mark. Technology of the Guitar. New York: Springer US, 14

May 2012. 352 pp. ISBN 1461419204. Available from: <https://www.ebook.de/de/

product/16501084/richard_mark_french_technology_of_the_guitar.html>.

FRITTS, Lawrence. The University of Iowa Musical Instrument Samples

(MIS). 1997. Available from: <http://theremin.music.uiowa.edu/MIS.html>.

Visited on: 8 Mar. 2021.

FUJIMURA, O. An approximation to voice aperiodicity. IEEE Transactions on

Audio and Electroacoustics, Institute of Electrical and Electronics Engineers

(IEEE), v. 16, n. 1, p. 68–72, Mar. 1968. DOI: 10.1109/tau.1968.1161951.

GABOR, D. Theory of communication. Part 1: The analysis of information. Journal of

the Institution of Electrical Engineers - Part III: Radio and Communication

Engineering, Institution of Engineering and Technology (IET), v. 93, n. 26,

p. 429–441, Nov. 1946. DOI: 10.1049/ji-3-2.1946.0074.

GARRETT, Steven L. Understanding Acoustics. Switzerland: Springer Cham, 24

Feb. 2017. 896 pp. ISBN 9783319499789. Available from: <https://www.ebook.de/de/

product/33441603/steven_l_garrett_understanding_acoustics.html>.

GARRITAN. Yamaha CFX Concert Grand Piano. 16 May 2022. Available from:

<https://www.garritan.com/products/cfx-concert-grand-virtual-piano/>.

Visited on: 16 May 2022.

GRAHAM-CUMMING, John. Let’s build Babbage’s Analytical Engine. New

Scientist, Elsevier BV, v. 208, n. 2791, p. 26–27, Dec. 2010. DOI:

10.1016/s0262-4079(10)63100-4.

GRAVES, Alex. Generating Sequences With Recurrent Neural Networks. arXiv, 2013.

DOI: 10.48550/ARXIV.1308.0850.

GRIFFIN, Daniel W.; LIM, Jae S. Multiband excitation vocoder. IEEE Transactions

on Acoustics, Speech, and Signal Processing, Institute of Electrical and

https://doi.org/10.1109/icassp.2013.6637605
https://www.ebook.de/de/product/16501084/richard_mark_french_technology_of_the_guitar.html
https://www.ebook.de/de/product/16501084/richard_mark_french_technology_of_the_guitar.html
http://theremin.music.uiowa.edu/MIS.html
https://doi.org/10.1109/tau.1968.1161951
https://doi.org/10.1049/ji-3-2.1946.0074
https://www.ebook.de/de/product/33441603/steven_l_garrett_understanding_acoustics.html
https://www.ebook.de/de/product/33441603/steven_l_garrett_understanding_acoustics.html
https://www.garritan.com/products/cfx-concert-grand-virtual-piano/
https://doi.org/10.1016/s0262-4079(10)63100-4
https://doi.org/10.48550/ARXIV.1308.0850

165

Electronics Engineers (IEEE), v. 36, n. 8, p. 1223–1235, Aug. 1988. DOI:

10.1109/29.1651.

GUNAWAN, Teddy Surya; KARTIWI, Mira. Performance Evaluation of Multichannel

Audio Compression. Indonesian Journal of Electrical Engineering and

Computer Science, v. 10, n. 1, p. 146, Apr. 2018. ISSN 2502-4760, 2502-4752. DOI:

10.11591/ijeecs.v10.i1.pp146-153. Available from:

<http://ijeecs.iaescore.com/index.php/IJEECS/article/view/10871>. Visited

on: 3 Mar. 2021.

HAHN, Stefan L. The History of Applications of Analytic Signals in Electrical and

Radio Engineering. In: EUROCON 2007 - The International Conference on ”Computer

as a Tool”. Warsaw, Poland: IEEE, 2007. DOI: 10.1109/eurcon.2007.4400463.

HAWLEY, Scott H. Synthesis of Musical Instrument Sounds: Physics-Based Modeling

or Machine Learning? Acoustics Today, Acoustical Society of America (ASA), v. 16,

n. 1, p. 20, 2020. DOI: 10.1121/at.2020.16.1.20.

HE, Lei; DELLWO, Volker. A Praat-Based Algorithm to Extract the Amplitude

Envelope and Temporal Fine Structure Using the Hilbert Transform. In:

INTERSPEECH 2016. San Francisco: ISCA, Sept. 2016. DOI:

10.21437/interspeech.2016-1447.

HEIDEMAN, Michael T.; JOHNSON, Don H.; BURRUS, C. Sidney. Gauss and the

history of the fast Fourier transform. Archive for History of Exact Sciences,

Springer Science and Business Media LLC, v. 34, n. 3, p. 265–277, 1985. DOI:

10.1007/bf00348431.

HILL, Matthew. George Breed and His Electrified Guitar of 1890. The Galpin Society

Journal, The Galpin Society, v. 61, p. 193–203, 2008.

HILLER, Lejaren A.; ISAACSON, Leonard M. Experimental music; composition

with an electronic computer. New York: McGraw-Hill, 1959. ISBN 9780313221583.

Available from:

<https://archive.org/details/experimentalmusi00hill/page/n5/mode/2up>.

https://doi.org/10.1109/29.1651
https://doi.org/10.11591/ijeecs.v10.i1.pp146-153
http://ijeecs.iaescore.com/index.php/IJEECS/article/view/10871
https://doi.org/10.1109/eurcon.2007.4400463
https://doi.org/10.1121/at.2020.16.1.20
https://doi.org/10.21437/interspeech.2016-1447
https://doi.org/10.1007/bf00348431
https://archive.org/details/experimentalmusi00hill/page/n5/mode/2up

166

HINES, Andrew; GILLEN, Eoin; KELLY, Damien; SKOGLUND, Jan;

KOKARAM, Anil; HARTE, Naomi. ViSQOLAudio: An objective audio quality metric

for low bitrate codecs. The Journal of the Acoustical Society of America,

Acoustical Society of America (ASA), v. 137, n. 6, el449–el455, June 2015. DOI:

10.1121/1.4921674.

HINES, Andrew; SKOGLUND, Jan; KOKARAM, Anil; HARTE, Naomi. ViSQOL: an

objective speech quality model. EURASIP Journal on Audio, Speech, and Music

Processing, 2015 (13), p. 1–18, 2015.

HLAWATSCH, Franz; AUGER, Franois (Eds.). Time-Frequency Analysis:

Concepts and Methods. New Jersey, United States: ISTE, Jan. 2008. ISBN

9780470611203. DOI: 10.1002/9780470611203.

HU, Chenhao; WANG, Xiaochen; HU, Ruimin; WU, Yulin. Audio object coding based

on N-step residual compensating. Multimedia Tools and Applications, Feb. 2021.

ISSN 1380-7501, 1573-7721. DOI: 10.1007/s11042-020-10339-0. Available from:

<http://link.springer.com/10.1007/s11042-020-10339-0>. Visited on: 3 Mar.

2021.

HU, Xiyuan; PENG, Silong; HWANG, Wen-Liang. EMD Revisited: A New

Understanding of the Envelope and Resolving the Mode-Mixing Problem in AM-FM

Signals. IEEE Transactions on Signal Processing, Institute of Electrical and

Electronics Engineers (IEEE), v. 60, n. 3, p. 1075–1086, Mar. 2012. DOI:

10.1109/tsp.2011.2179650.

HUBERT, Paulo; PADOVESE, Linilson; STERN, Julio. A Sequential Algorithm for

Signal Segmentation. Entropy, MDPI AG, v. 20, n. 1, p. 55, Jan. 2018. DOI:

10.3390/e20010055.

HUZAIFAH, Muhammad; WYSE, Lonce. Deep Generative Models for Musical Audio

Synthesis. In: HANDBOOK of Artificial Intelligence for Music. Switzerland: Springer

International Publishing, 2021. p. 639–678. DOI: 10.1007/978-3-030-72116-9_22.

ITU-R. Method for the subjective assessment of intermediate quality level of audio

systems. International Telecommunication Union Radiocommunication

https://doi.org/10.1121/1.4921674
https://doi.org/10.1002/9780470611203
https://doi.org/10.1007/s11042-020-10339-0
http://link.springer.com/10.1007/s11042-020-10339-0
https://doi.org/10.1109/tsp.2011.2179650
https://doi.org/10.3390/e20010055
https://doi.org/10.1007/978-3-030-72116-9_22

167

Assembly, 2014. Available from:

<https://www.itu.int/rec/R-REC-BS.1534-3-201510-I/en>.

JIA, Linshan; ZHANG, Qing; ZHENG, Xiang; YAO, Pulin; HE, Xiaogao;

WEI, Xiaohan. The empirical optimal envelope and its application to local mean

decomposition. Digital Signal Processing, Elsevier BV, v. 87, p. 166–177, Apr. 2019.

DOI: 10.1016/j.dsp.2019.01.024.

JINGZHOU, Sun; YONGBIN, Wang; XIAOSEN, Chen. Audio Segmentation and

Classification Approach Based on Adaptive CNN in Broadcast Domain. In: 2019

IEEE/ACIS 18th International Conference on Computer and Information Science

(ICIS). Beijing, China: IEEE, June 2019. DOI: 10.1109/icis46139.2019.8940257.

KAMMLER, David W. A First Course in Fourier Analysis. Cambridge: Cambridge

University Press, 2008. p. 864. ISBN 9780521709798.

KELLY, Martin. Computer : a history of the information machine. Boulder,

Colorado: Westview Press, a member of the Perseus Books Group, 2014. ISBN

9780813345901.

KENMOCHI, Hideki; OHSHITA, Hayato. VOCALOID-commercial singing synthesizer

based on sample concatenation. In: PROCEEDINGS of the 8th Annual Conference of

the International Speech Communication Association. Japan: Interspeech, 2007.

p. 4009–4010.

KIEFER, Chris. Sample-level sound synthesis with recurrent neural networks and

conceptors. PeerJ Computer Science, PeerJ, v. 5, e205, July 2019. DOI:

10.7717/peerj-cs.205.

KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Optimization.

arXiv, 2014. DOI: 10.48550/ARXIV.1412.6980.

KOBAYASHI, Hajime; TAGUCHI, Takashi. Virtual idol Hatsune Miku: Case study of

new production/consumption phenomena generated by network effects in Japan’s online

environment. Markets, Globalization & Development Review, v. 3, n. 4, 2019.

https://www.itu.int/rec/R-REC-BS.1534-3-201510-I/en
https://doi.org/10.1016/j.dsp.2019.01.024
https://doi.org/10.1109/icis46139.2019.8940257
https://doi.org/10.7717/peerj-cs.205
https://doi.org/10.48550/ARXIV.1412.6980

168

KRYMOVA, Ekaterina; NAGATHIL, Anil; BELOMESTNY, Denis; MARTIN, Rainer.

Segmentation of music signals based on explained variance ratio for applications in

spectral complexity reduction. In: 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). New Orleans: IEEE, Mar. 2017. DOI:

10.1109/icassp.2017.7952147.

LAME DEVELOPERS. The LAME Project. 2017. Available from:

<https://lame.sourceforge.io/index.php>.

LEVINE, Scott N.; SMITH III, Julius Orion. A Sines+Transients+Noise Audio

Representation for Data Compression and Time Pitch Scale Modifications. Audio

Engineering Society Convention, p. 21, 1998.

LIU, Liyuan; JIANG, Haoming; HE, Pengcheng; CHEN, Weizhu; LIU, Xiaodong;

GAO, Jianfeng; HAN, Jiawei. On the Variance of the Adaptive Learning Rate and

Beyond. arXiv, 2019. DOI: 10.48550/ARXIV.1908.03265.

LOKKI, Tapio; PÄTYNEN, Jukka; TERVO, Sakari; SILTANEN, Samuel;

SAVIOJA, Lauri. Engaging concert hall acoustics is made up of temporal envelope

preserving reflections. The Journal of the Acoustical Society of America,

Acoustical Society of America (ASA), v. 129, n. 6, el223–el228, June 2011. DOI:

10.1121/1.3579145.

LOSHCHILOV, Ilya; HUTTER, Frank. Decoupled Weight Decay Regularization. arXiv,

2017. DOI: 10.48550/ARXIV.1711.05101.

LOSTANLEN, Vincent; ANDÉN, Joakim; LAGRANGE, Mathieu. Fourier at the heart

of computer music: From harmonic sounds to texture. Comptes Rendus Physique,

Elsevier BV, v. 20, n. 5, p. 461–473, July 2019. DOI: 10.1016/j.crhy.2019.07.005.

LOUGHLIN, Patrick J.; TACER, Berkant. On the amplitude- and

frequency-modulation decomposition of signals. The Journal of the Acoustical

Society of America, Acoustical Society of America (ASA), v. 100, n. 3, p. 1594–1601,

Sept. 1996. DOI: 10.1121/1.416061.

https://doi.org/10.1109/icassp.2017.7952147
https://lame.sourceforge.io/index.php
https://doi.org/10.48550/ARXIV.1908.03265
https://doi.org/10.1121/1.3579145
https://doi.org/10.48550/ARXIV.1711.05101
https://doi.org/10.1016/j.crhy.2019.07.005
https://doi.org/10.1121/1.416061

169

LOY, Gareth. Musicians Make a Standard: The MIDI Phenomenon. Computer Music

Journal, JSTOR, v. 9, n. 4, p. 8, 1985. DOI: 10.2307/3679619.

LYONS, R. dsp tips & tricks - the sliding DFT. IEEE Signal Processing Magazine,

Institute of Electrical and Electronics Engineers (IEEE), v. 20, n. 2, p. 74–80, Mar.

2003. DOI: 10.1109/msp.2003.1184347.

LYONS, Richard. Digital Envelope Detection: The Good, the Bad, and the Ugly [Tips

and Tricks]. IEEE Signal Processing Magazine, Institute of Electrical and

Electronics Engineers (IEEE), v. 34, n. 4, p. 183–187, July 2017. DOI:

10.1109/msp.2017.2690438.

MAESTRE, Esteban; RAMÍREZ, Rafael; KERSTEN, Stefan; SERRA, Xavier.

Expressive Concatenative Synthesis by Reusing Samples from Real Performance

Recordings. Computer Music Journal, MIT Press - Journals, v. 33, n. 4, p. 23–42,

Dec. 2009. DOI: 10.1162/comj.2009.33.4.23.

MAHER, Robert C. Wavetable Synthesis Strategies for Mobile Devices. Journal of the

Audio Engineering Society, v. 53, n. 3, p. 205–212, Mar. 2005.

MANDEL, J.; BRUN, L. (Eds.). Mechanical Waves in Solids. Vienna: Springer

Vienna, 1975. DOI: 10.1007/978-3-7091-2728-5.

MASUYAMA, Yoshiki; YATABE, Kohei; OIKAWA, Yasuhiro. Phase-aware

Harmonic/percussive Source Separation via Convex Optimization. In: ICASSP 2019 -

2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). Brighton, UK: IEEE, May 2019. DOI: 10.1109/icassp.2019.8683821.

MATHEWS, M. V. The Digital Computer as a Musical Instrument. Science, American

Association for the Advancement of Science (AAAS), v. 142, n. 3592, p. 553–557, Nov.

1963. DOI: 10.1126/science.142.3592.553.

MATHEWS, Max V. An Acoustic Compiler for Music and Psychological Stimuli. Bell

System Technical Journal, Institute of Electrical and Electronics Engineers (IEEE),

v. 40, n. 3, p. 677–694, May 1961. DOI: 10.1002/j.1538-7305.1961.tb03237.x.

https://doi.org/10.2307/3679619
https://doi.org/10.1109/msp.2003.1184347
https://doi.org/10.1109/msp.2017.2690438
https://doi.org/10.1162/comj.2009.33.4.23
https://doi.org/10.1007/978-3-7091-2728-5
https://doi.org/10.1109/icassp.2019.8683821
https://doi.org/10.1126/science.142.3592.553
https://doi.org/10.1002/j.1538-7305.1961.tb03237.x

170

MCAULAY, Robert J; QUATIERI, Thomas F. Sinusoidal transform coding. In:

PROCEEDINGS of the Mobile Satellite Conference (Jet Propulsion Lab). Pasadena,

California: NASA, 1988.

MEHRI, Soroush; KUMAR, Kundan; GULRAJANI, Ishaan; KUMAR, Rithesh;

JAIN, Shubham; SOTELO, Jose; COURVILLE, Aaron; BENGIO, Yoshua. SampleRNN:

An Unconditional End-to-End Neural Audio Generation Model, 22 Dec. 2016. arXiv:

1612.07837 [cs.SD].

MILLS, Mara. Media and Prosthesis: The Vocoder, the Artificial Larynx, and the

History of Signal Processing. Qui Parle, Duke University Press, v. 21, n. 1, p. 107–149,

June 2012. DOI: 10.5250/quiparle.21.1.0107.

MIRANDA, Eduardo Reck (Ed.). Handbook of Artificial Intelligence for Music.

Switzerland: Springer International Publishing, 2021. DOI:

10.1007/978-3-030-72116-9.

. Readings in Music and Artificial Intelligence. London: Routledge,

2000. DOI: 10.4324/9780203059746.

MIRANDA, Eduardo Reck; WILLIAMS, Duncan. Artificial Intelligence in «Organised

Sound». Organised Sound, Cambridge University Press (CUP), v. 20, n. 1, p. 76–81,

Mar. 2015. DOI: 10.1017/s1355771814000454.

MITROVIĆ, Dalibor; ZEPPELZAUER, Matthias; BREITENEDER, Christian.

Features for Content-Based Audio Retrieval. In: ADVANCES in Computers.

Amsterdam: Elsevier, 2010. p. 71–150. DOI: 10.1016/s0065-2458(10)78003-7.

MODARTT. Pianoteq 7. 16 May 2022. Available from:

<https://www.modartt.com/pianoteq>. Visited on: 16 May 2022.

MONTAGU, Jeremy. Origins and Development of Musical Instruments. Lanham,

Maryland, United States: Scarecrow Press, 29 Oct. 2007. 280 pp. Available from:

<https://www.ebook.de/de/product/15249274/jeremy_montagu_origins_and_

development_of_musical_instruments.html>.

https://arxiv.org/abs/1612.07837
https://doi.org/10.5250/quiparle.21.1.0107
https://doi.org/10.1007/978-3-030-72116-9
https://doi.org/10.4324/9780203059746
https://doi.org/10.1017/s1355771814000454
https://doi.org/10.1016/s0065-2458(10)78003-7
https://www.modartt.com/pianoteq
https://www.ebook.de/de/product/15249274/jeremy_montagu_origins_and_development_of_musical_instruments.html
https://www.ebook.de/de/product/15249274/jeremy_montagu_origins_and_development_of_musical_instruments.html

171

MOOG, Robert A. Voltage controlled electronic music modules. journal of the audio

engineering society, v. 13, n. 3, p. 200–206, July 1965.

MOORE, F. Richard. The Dysfunctions of MIDI. Computer Music Journal, JSTOR,

v. 12, n. 1, p. 19, 1988. DOI: 10.2307/3679834.

MORSE, Philip M.; INGARD, K. Uno. Theoretical Acoustics. Princeton, New

Jersey, United States: Princeton University Press, 21 Jan. 1987. 952 pp. ISBN

0691024014. Available from: <https://www.ebook.de/de/product/2478529/philip_

m_morse_k_uno_ingard_theoretical_acoustics.html>.

MOUKADEM, Ali; DIETERLEN, Alain; HUEBER, Nicolas; BRANDT, Christian. A

robust heart sounds segmentation module based on S-transform. Biomedical Signal

Processing and Control, Elsevier BV, v. 8, n. 3, p. 273–281, May 2013. DOI:

10.1016/j.bspc.2012.11.008.

MOULINES, Eric; CHARPENTIER, Francis. Pitch-synchronous waveform processing

techniques for text-to-speech synthesis using diphones. Speech communication,

Elsevier, v. 9, n. 5-6, p. 453–467, 1990.

MUHAMMAD, Ghulam; MELHEM, Moutasem. Pathological voice detection and binary

classification using MPEG-7 audio features. Biomedical Signal Processing and

Control, Elsevier BV, v. 11, p. 1–9, May 2014. DOI: 10.1016/j.bspc.2014.02.001.

NATSIOU, Anastasia; O’LEARY, Sean. Audio representations for deep learning in

sound synthesis: A review. In: 2021 IEEE/ACS 18th International Conference on

Computer Systems and Applications (AICCSA). Tangier, Morocco: IEEE, Nov. 2021.

DOI: 10.1109/aiccsa53542.2021.9686838.

NEUMANN, J. von. First draft of a report on the EDVAC. IEEE Annals of the

History of Computing, Institute of Electrical and Electronics Engineers (IEEE),

v. 15, n. 4, p. 27–75, 1993. DOI: 10.1109/85.238389.

OLIVEIRA, Agamenon R. E. D’Alembert and the Wave Equation: Its Disputes and

Controversies. Advances in Historical Studies, Scientific Research Publishing, Inc.,

v. 09, n. 04, p. 229–239, 2020. DOI: 10.4236/ahs.2020.94019.

https://doi.org/10.2307/3679834
https://www.ebook.de/de/product/2478529/philip_m_morse_k_uno_ingard_theoretical_acoustics.html
https://www.ebook.de/de/product/2478529/philip_m_morse_k_uno_ingard_theoretical_acoustics.html
https://doi.org/10.1016/j.bspc.2012.11.008
https://doi.org/10.1016/j.bspc.2014.02.001
https://doi.org/10.1109/aiccsa53542.2021.9686838
https://doi.org/10.1109/85.238389
https://doi.org/10.4236/ahs.2020.94019

172

OORD, Aaron van den; DIELEMAN, Sander; ZEN, Heiga; SIMONYAN, Karen;

VINYALS, Oriol; GRAVES, Alex; KALCHBRENNER, Nal; SENIOR, Andrew;

KAVUKCUOGLU, Koray. WaveNet: A Generative Model for Raw Audio, 12 Sept. 2016.

arXiv: 1609.03499 [cs.SD].

OORD, Aaron van den; KALCHBRENNER, Nal; VINYALS, Oriol; ESPEHOLT, Lasse;

GRAVES, Alex; KAVUKCUOGLU, Koray. Conditional Image Generation with

PixelCNN Decoders, 16 June 2016. arXiv: 1606.05328 [cs.CV].

OPPENHEIM, Alan V.; SCHAFER, Ronald W. Discrete-Time Signal Processing:

Pearson New International Edition. [S.l.]: Pearson Education, Limited, 2013. p. 1060.

ISBN 9781292025728.

ORALLO, Carlos Martin; CARUGATI, Ignacio. Single Bin Sliding Discrete Fourier

Transform. In: FOURIER Transforms - High-tech Application and Current Trends.

London: InTech, Feb. 2017. DOI: 10.5772/66337.

POLYAK, B. T.; JUDITSKY, A. B. Acceleration of Stochastic Approximation by

Averaging. SIAM Journal on Control and Optimization, Society for Industrial &

Applied Mathematics (SIAM), v. 30, n. 4, p. 838–855, July 1992. DOI:

10.1137/0330046.

POPESCU, Theodor D. Signal segmentation using changing regression models with

application in seismic engineering. Digital Signal Processing, Elsevier BV, v. 24,

p. 14–26, Jan. 2014. DOI: 10.1016/j.dsp.2013.09.003.

PURNHAGEN, H.; MEINE, N. HILN-the MPEG-4 parametric audio coding tools. In:

2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies

for the 21st Century. Proceedings (IEEE Cat No.00CH36353). Geneva, Switzerland:

Presses Polytech. Univ. Romandes, 2000. DOI: 10.1109/iscas.2000.856031.

QI, Beier; MAO, Yitao; LIU, Jiaxing; LIU, Bo; XU, Li. Relative contributions of

acoustic temporal fine structure and envelope cues for lexical tone perception in noise.

The Journal of the Acoustical Society of America, Acoustical Society of America

(ASA), v. 141, n. 5, p. 3022–3029, May 2017. DOI: 10.1121/1.4982247.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1606.05328
https://doi.org/10.5772/66337
https://doi.org/10.1137/0330046
https://doi.org/10.1016/j.dsp.2013.09.003
https://doi.org/10.1109/iscas.2000.856031
https://doi.org/10.1121/1.4982247

173

RABINER, Lawrence. Theory and application of digital signal processing.

Englewood Cliffs, N.J: Prentice-Hall, 1975. ISBN 9780139141010.

RAW MATERIAL SOFTWARE LIMITED. JUCE. en. Available from:

<https://juce.com/>. Visited on: 11 Apr. 2022.

REDDI, Sashank J.; KALE, Satyen; KUMAR, Sanjiv. On the Convergence of Adam

and Beyond. arXiv, 2019. DOI: 10.48550/ARXIV.1904.09237.

REDHEFFER, Raymond. A Machine for Playing the Game Nim. The American

Mathematical Monthly, Informa UK Limited, v. 55, n. 6, p. 343–349, June 1948.

DOI: 10.1080/00029890.1948.11999249.

RIEDMILLER, M.; BRAUN, H. A direct adaptive method for faster backpropagation

learning: the RPROP algorithm. In: IEEE International Conference on Neural

Networks. San Francisco, CA, USA: IEEE, 1993. DOI: 10.1109/icnn.1993.298623.

RIX, Antony W.; HOLLIER, Michael P.; HEKSTRA, Andries P.; BEERENDS, John G.

Perceptual Evaluation of Speech Quality (PESQ) The New ITU Standard for

End-to-End Speech Quality Assessment Part I–Time-Delay Compensation. Journal of

the Audio Engineering Society, v. 50, n. 10, p. 755–764, 2002. Available from:

<http://www.aes.org/e-lib/browse.cfm?elib=11063>.

ROUVALI, Santtu-Matias (Ed.). Philharmonia Sound Samples. en-GB. Available

from: <https://philharmonia.co.uk/resources/sound-samples/>. Visited on: 8

Mar. 2021.

RYBACH, David; GOLLAN, Christian; SCHLUTER, Ralf; NEY, Hermann. Audio

segmentation for speech recognition using segment features. In: 2009 IEEE International

Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan: IEEE, Apr.

2009. DOI: 10.1109/icassp.2009.4960554.

SAVITZKY, Abraham.; GOLAY, M. J. E. Smoothing and Differentiation of Data by

Simplified Least Squares Procedures. Analytical Chemistry, American Chemical

Society (ACS), v. 36, n. 8, p. 1627–1639, July 1964. DOI: 10.1021/ac60214a047.

https://juce.com/
https://doi.org/10.48550/ARXIV.1904.09237
https://doi.org/10.1080/00029890.1948.11999249
https://doi.org/10.1109/icnn.1993.298623
http://www.aes.org/e-lib/browse.cfm?elib=11063
https://philharmonia.co.uk/resources/sound-samples/
https://doi.org/10.1109/icassp.2009.4960554
https://doi.org/10.1021/ac60214a047

174

SCHWARZ, Diemo. Current research in concatenative sound synthesis. In:

INTERNATIONAL Computer Music Conference (ICMC). Barcelona, Spain: ICMC,

2005. p. 1–1.

SEICHTER, Daniel; CUCCOVILLO, Luca; AICHROTH, Patrick. AAC encoding

detection and bitrate estimation using a convolutional neural network. In: 2016 IEEE

INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL

PROCESSING (ICASSP). 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). Shanghai: IEEE, Mar. 2016.

p. 2069–2073. ISBN 978-1-4799-9988-0. DOI: 10.1109/ICASSP.2016.7472041. Available

from: <http://ieeexplore.ieee.org/document/7472041/>. Visited on: 3 Mar. 2021.

SERRA, Xavier. A System for Sound Analysis/Transformation/Synthesis

Based on a Deterministic Plus Stochastic Decomposition. 1989. PhD thesis –

Stanford University, Stanford, CA. Available from:

<https://ccrma.stanford.edu/files/papers/stanm58.pdf>.

SERRA, Xavier et al. Musical sound modeling with sinusoids plus noise. Musical

signal processing, Lisse, the Netherlands, p. 91–122, 1997.

SERRA, Xavier; SMITH III, Julius Orion. Spectral Modeling Synthesis: A Sound

Analysis/Synthesis System Based on a Deterministic Plus Stochastic Decomposition.

Computer Music Journal, The MIT Press, v. 14, n. 4, p. 12–24, 1990. ISSN

01489267, 15315169. DOI: https://doi.org/10.2307/3680788. Available from:

<http://www.jstor.org/stable/3680788>. Visited on: 27 June 2022.

SHAH, S. Microsoft and Facebook’s open AI ecosystem gains more support:

Intel, IBM, Huawei, and more pledge allegiance to the ONNX framework. 11 Oct. 2017.

Available from: <https://www.engadget.com/2017-10-11-microsoft-facebooks-ai-

onxx-partners.html>. Visited on: 10 Apr. 2022.

SHANNON, R. V.; ZENG, F.-G.; KAMATH, V.; WYGONSKI, J.; EKELID, M. Speech

Recognition with Primarily Temporal Cues. Science, American Association for the

Advancement of Science (AAAS), v. 270, n. 5234, p. 303–304, Oct. 1995. DOI:

10.1126/science.270.5234.303.

https://doi.org/10.1109/ICASSP.2016.7472041
http://ieeexplore.ieee.org/document/7472041/
https://ccrma.stanford.edu/files/papers/stanm58.pdf
https://doi.org/https://doi.org/10.2307/3680788
http://www.jstor.org/stable/3680788
https://www.engadget.com/2017-10-11-microsoft-facebooks-ai-onxx-partners.html
https://www.engadget.com/2017-10-11-microsoft-facebooks-ai-onxx-partners.html
https://doi.org/10.1126/science.270.5234.303

175

SIKORA, Thomas; MOREAU, Nicolas; KIM, Hyoung-Gook. Mpeg-7 Audio and

Beyond: Audio Content Indexing and Retrieval. Hoboken, New Jersey: WILEY,

Dec. 2005. 304 pp. ISBN 047009334X.

SLOAN, Colm; HARTE, Naomi; KELLY, Damien; KOKARAM, Anil C.;

HINES, Andrew. Objective Assessment of Perceptual Audio Quality Using

ViSQOLAudio. IEEE Transactions on Broadcasting, v. 63, n. 4, p. 693–705, Dec.

2017. ISSN 0018-9316, 1557-9611. DOI: 10.1109/TBC.2017.2704421. Available from:

<http://ieeexplore.ieee.org/document/7940042/>. Visited on: 17 Mar. 2021.

SLUIS, Samantha van der. Best Piano VST Plugins 2022. 2022. Available from:

<https://www.pianodreamers.com/best-piano-vst-plugins/>. Visited on: 16 May

2022.

SMITH, Dave; WOOD, Chet. The «USI», or Universal Synthesizer Interface. journal of

the audio engineering society, Oct. 1981.

SMITH III, Julius Orion. Viewpoints on the History of Digital Synthesis. In:

PROCEEDINGS of the International Computer Music Conference. Montreal: ICMC-91,

1991. Available from: <https://ccrma.stanford.edu/~jos/kna/>.

SPECTRASONICS. Keyscape. 16 May 2022. Available from:

<https://www.spectrasonics.net/products/keyscape/>. Visited on: 16 May 2022.

SRIVASTAVA, Saurabh Ranjan; DUBE, Sachin; SHRIVASTAYA, Gulshan;

SHARMA, Kavita. Smartphone Triggered Security Challenges - Issues, Case Studies and

Prevention. In: LE, DacNhuong; KUMAR, Raghvendra; MISHRA, Brojo Kishore;

KHARI, Manju; CHATTERJEE, Jyotir Moy (Eds.). Cyber Security in Parallel and

Distributed Computing. Hoboken, NJ, USA: John Wiley & Sons, Inc., Mar. 2019.

p. 187–206. ISBN 978-1-119-48833-0 978-1-119-48805-7. DOI:

10.1002/9781119488330.ch12. Available from:

<http://doi.wiley.com/10.1002/9781119488330.ch12>. Visited on: 8 Mar. 2021.

STAFF, Prandoni Paolo. Signal Processing for Communications. [S.l.]: Taylor &

Francis Group, 2008. p. 300. ISBN 9781420070460.

https://doi.org/10.1109/TBC.2017.2704421
http://ieeexplore.ieee.org/document/7940042/
https://www.pianodreamers.com/best-piano-vst-plugins/
https://ccrma.stanford.edu/~jos/kna/
https://www.spectrasonics.net/products/keyscape/
https://doi.org/10.1002/9781119488330.ch12
http://doi.wiley.com/10.1002/9781119488330.ch12

176

STEIN, Elias M.; SHAKARCHI, Rami. Complex Analysis (Princeton Lectures in

Analysis). Princeton: Princeton University Press, 2003. p. 392. ISBN 9780691113852.

STUBBS, David. Mars by 1980 : the story of electronic music. London: Faber and

Faber Limited, 2018. ISBN 9780571323975.

SUTSKEVER, Ilya; MARTENS, James; DAHL, George; HINTON, Geoffrey. On the

importance of initialization and momentum in deep learning. In: INTERNATIONAL

CONFERENCE ON MACHINE LEARNING, 3. Proceedings of the 30th

International Conference on Machine Learning. Ed. by Sanjoy Dasgupta and

David McAllester. Atlanta, Georgia, USA: PMLR, June 2013. v. 28. (Proceedings of

Machine Learning Research, 3). ICML, p. 1139–1147. Available from:

<https://proceedings.mlr.press/v28/sutskever13.html>.

SYNTHOGY. Ivory II Grand Pianos. 16 May 2022. Available from:

<https://synthogy.com/index.php/products/software-products/ivory-2-grand-

pianos>. Visited on: 16 May 2022.

TAHIROĞLU, Koray; MAGNUSSON, Thor. Introduction to the special issue on

socio-cultural role of technology in digital musical instruments. Journal of New

Music Research, Informa UK Limited, v. 50, n. 2, p. 117–120, Mar. 2021. DOI:

10.1080/09298215.2021.1907421.

TARJANO, Carlos. Compression GitHub repository. Rio de Janeiro: Zenodo, 2021.

DOI: 10.5281/zenodo.5048453. Available from:

<https://github.com/tesserato/compression>.

. Envelope Repository. 2020. DOI: 10.5281/zenodo.4719717. Available

from: <https://github.com/tesserato/envelope>. Visited on: 3 Dec. 2020.

. Omnes Sonos. 29 Mar. 2022. Available from:

<https://omnessonos.web.app/>. Visited on: 10 Apr. 2022.

. Redes neurais aplicadas à modelagem de instrumentos acústicos

para sı́ntese sonora em tempo real. 2018. MA thesis – Universidade Federal

https://proceedings.mlr.press/v28/sutskever13.html
https://synthogy.com/index.php/products/software-products/ivory-2-grand-pianos
https://synthogy.com/index.php/products/software-products/ivory-2-grand-pianos
https://doi.org/10.1080/09298215.2021.1907421
https://doi.org/10.5281/zenodo.5048453
https://github.com/tesserato/compression
https://doi.org/10.5281/zenodo.4719717
https://github.com/tesserato/envelope
https://omnessonos.web.app/

177

Fluminense. DOI: 10.22409/TPP.2018.m.11839251743. Available from:

<https://app.uff.br/riuff/handle/1/7613>.

TARJANO, Carlos; PEREIRA, Valdecy. An Efficient Algorithm For Segmenting

Quasi-Periodic Digital Signals Into Pseudo Cycles: Application in Lossy Audio

Compression. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, Institute of Electrical and Electronics Engineers (IEEE), p. 1–1, 2022.

DOI: 10.1109/taslp.2022.3171969.

. Envelope estimation using geometric properties of a discrete real signal.

Digital Signal Processing, Elsevier BV, v. 120, p. 103229, Jan. 2022. DOI:

10.1016/j.dsp.2021.103229.

. Neuro-Spectral Audio Synthesis: Exploiting Characteristics of the Discrete

Fourier Transform in the Real-Time Simulation of Musical Instruments Using Parallel

Neural Networks. In: ARTIFICIAL Neural Networks and Machine Learning – ICANN

2019: Text and Time Series. Switzerland: Springer International Publishing, 2019.

p. 362–375. DOI: 10.1007/978-3-030-30490-4_30.

THE LINUX FOUNDATION. Open Neural Network Exchange,The open

standard for machine learning interoperability. 2019. Available from:

<https://onnx.ai/>. Visited on: 10 Apr. 2022.

THE MIDI ASSOCIATION. The History Of MIDI. 9 Apr. 2022. Available from:

<https://www.midi.org/midi-articles/the-history-of-midi>.

TRUEMAN, Dan; MULSHINE, Mike; WANG, Matt. bitKlavier. 2021. Available from:

<https://bitklavier.com/#aboutBody>.

TURING, A. M. On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, Wiley,

s2-42, n. 1, p. 230–265, 1937. DOI: 10.1112/plms/s2-42.1.230.

TURNER, Richard E.; SAHANI, Maneesh. Demodulation as Probabilistic Inference.

IEEE Transactions on Audio, Speech, and Language Processing, Institute of

https://doi.org/10.22409/TPP.2018.m.11839251743
https://app.uff.br/riuff/handle/1/7613
https://doi.org/10.1109/taslp.2022.3171969
https://doi.org/10.1016/j.dsp.2021.103229
https://doi.org/10.1007/978-3-030-30490-4_30
https://onnx.ai/
https://www.midi.org/midi-articles/the-history-of-midi
https://bitklavier.com/#aboutBody
https://doi.org/10.1112/plms/s2-42.1.230

178

Electrical and Electronics Engineers (IEEE), v. 19, n. 8, p. 2398–2411, Nov. 2011. DOI:

10.1109/tasl.2011.2135852.

VALBRET, H.; MOULINES, E.; TUBACH, J.P. Voice transformation using PSOLA

technique. Speech Communication, Elsevier BV, v. 11, n. 2-3, p. 175–187, June 1992.

DOI: 10.1016/0167-6393(92)90012-v.

VALIN, Jean-Marc; MAXWELL, Gregory; TERRIBERRY, Timothy B.; VOS, Koen.

high-quality, low-delay music coding in the opus codec. journal of the audio

engineering society, Oct. 2013. Available from:

<https://www.aes.org/e-lib/browse.cfm?elib=16992>.

VARYTIMIDIS, Christos; RAPANTZIKOS, Konstantinos; AVRITHIS, Yannis;

KOLLIAS, Stefanos. Alpha-shapes for local feature detection. Pattern Recognition,

Elsevier BV, v. 50, p. 56–73, Feb. 2016. DOI: 10.1016/j.patcog.2015.08.016.

VÁŠA, L.; VANĚČEK, P.; PRANTL, M.; SKORKOVSKÁ, V.; MARTÍNEK, P.;

KOLINGEROVÁ, I. Mesh Statistics for Robust Curvature Estimation. Computer

Graphics Forum, Wiley, v. 35, n. 5, p. 271–280, Aug. 2016. DOI: 10.1111/cgf.12982.

VÁŠA, Libor; KÜHNERT, Tom; BRUNNETT, Guido. Multivariate analysis of

curvature estimators. Computer-Aided Design and Applications, CAD, v. 14, n. 1,

p. 58–69, June 2016. DOI: 10.1080/16864360.2016.1199756.

VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob;

JONES, Llion; GOMEZ, Aidan N.; KAISER, Lukasz; POLOSUKHIN, Illia. Attention Is

All You Need. arXiv, 2017. DOI: 10.48550/ARXIV.1706.03762.

VI LABS. Ravenscroft 275. 16 May 2022. Available from:

<https://www.vilabsaudio.com/Ravenscroft-By-VI-Labs>. Visited on: 16 May

2022.

VIENNA SYMPHONIC LIBRARY. Vienna Imperial virtual grand piano. 16 May

2022. Available from:

<https://www.vsl.co.at/en/Keyboards_Complete/Vienna_Imperial>. Visited on:

16 May 2022.

https://doi.org/10.1109/tasl.2011.2135852
https://doi.org/10.1016/0167-6393(92)90012-v
https://www.aes.org/e-lib/browse.cfm?elib=16992
https://doi.org/10.1016/j.patcog.2015.08.016
https://doi.org/10.1111/cgf.12982
https://doi.org/10.1080/16864360.2016.1199756
https://doi.org/10.48550/ARXIV.1706.03762
https://www.vilabsaudio.com/Ravenscroft-By-VI-Labs
https://www.vsl.co.at/en/Keyboards_Complete/Vienna_Imperial

179

VOCOBOX. Human Voice Dataset. original-date: 2014-12-27T21:21:24Z. 2015.

Available from: <https://github.com/vocobox/human-voice-dataset>. Visited on:

8 Mar. 2021.

WESSEL, David; WRIGHT, Matthew. Problems and Prospects for Intimate Musical

Control of Computers. Computer Music Journal, v. 26, n. 3, p. 11–22, Sept. 2002.

ISSN 0148-9267, 1531-5169. DOI: 10.1162/014892602320582945. Available from:

<https://direct.mit.edu/comj/article/26/3/11-22/94758>. Visited on: 16 Mar.

2021.

WHEELER, Gerald F.; CRUMMETT, William P. The vibrating string controversy.

American Journal of Physics, American Association of Physics Teachers (AAPT),

v. 55, n. 1, p. 33–37, Jan. 1987. DOI: 10.1119/1.15311.

WHITHAM, G. B. Linear and Nonlinear Waves. Hoboken, New Jersey, United

States: John Wiley & Sons, Inc., June 1999. DOI: 10.1002/9781118032954.

WILKINS, Julia; SEETHARAMAN, Prem; WAHL, Alison; PARDO, Bryan. Vocalset:

A Singing Voice Dataset. In: 19TH International Society for Music Information

Retrieval Conference. Paris,France: Zenodo, Mar. 2018. type: dataset. DOI:

10.5281/ZENODO.1203819. Available from: <https://zenodo.org/record/1203819>.

Visited on: 3 Mar. 2021.

WOLF, Mark. Encyclopedia of video games : the culture, technology, and art

of gaming. Santa Barbara, California: Greenwood, an imprint of ABC-CLIO, LLC,

2021. ISBN 9781440870200.

WU, Bin; YU, Bailang; HUANG, Chang; WU, Qiusheng; WU, Jianping. Automated

extraction of ground surface along urban roads from mobile laser scanning point clouds.

Remote Sensing Letters, Informa UK Limited, v. 7, n. 2, p. 170–179, Dec. 2015.

DOI: 10.1080/2150704x.2015.1117156.

XLN AUDIO. Studio Grand. 16 May 2022. Available from: <https:

//www.xlnaudio.com/products/addictive_keys/instrument/studio_grand>.

Visited on: 16 May 2022.

https://github.com/vocobox/human-voice-dataset
https://doi.org/10.1162/014892602320582945
https://direct.mit.edu/comj/article/26/3/11-22/94758
https://doi.org/10.1119/1.15311
https://doi.org/10.1002/9781118032954
https://doi.org/10.5281/ZENODO.1203819
https://zenodo.org/record/1203819
https://doi.org/10.1080/2150704x.2015.1117156
https://www.xlnaudio.com/products/addictive_keys/instrument/studio_grand
https://www.xlnaudio.com/products/addictive_keys/instrument/studio_grand

180

XU, Xin; CISEWSKI-KEHE, Jessi; DAVIS, Allen B.; FISCHER, Debra A.;

BREWER, John M. Modeling the Echelle Spectra Continuum with Alpha Shapes and

Local Regression Fitting. The Astronomical Journal, American Astronomical

Society, v. 157, n. 6, p. 243, May 2019. DOI: 10.3847/1538-3881/ab1b47.

YAN, Zhipei; SCHILLER, Stephen; WILENSKY, Gregg; CARR, Nathan;

SCHAEFER, Scott. k -curves. ACM Transactions on Graphics, Association for

Computing Machinery (ACM), v. 36, n. 4, p. 1–7, July 2017. DOI:

10.1145/3072959.3073692.

YANG, Cong; GRZEGORZEK, Marcin; LUKASIK, Ewa. Representing the evolving

temporal envelope of musical instruments sounds using Computer Vision methods. In:

SIGNAL Processing: Algorithms, Architectures, Arrangements, and Applications (SPA).

Poznań: IEEE, Sept. 2015. DOI: 10.1109/spa.2015.7365137.

YANG, Cong; TIEBE, Oliver; GRZEGORZEK, Marcin; LUKASIK, Ewa.

Skeleton-based audio envelope shape analysis. In: 3RD IAPR Asian Conference on

Pattern Recognition (ACPR). Nanjing, China: IEEE, Nov. 2015. DOI:

10.1109/acpr.2015.7486556.

YANG, Lijun; YANG, Zhihua; YANG, Lihua. The theoretical analysis for an iterative

envelope algorithm. Digital Signal Processing, v. 38, p. 32–42, 2015. ISSN 1051-2004.

DOI: https://doi.org/10.1016/j.dsp.2014.12.006. Available from:

<https://www.sciencedirect.com/science/article/pii/S1051200414003480>.

YANG, Lijun; YANG, Zhihua; ZHOU, Feng; YANG, Lihua. A novel envelope model

based on convex constrained optimization. Digital Signal Processing, Elsevier BV,

v. 29, p. 138–146, June 2014. DOI: 10.1016/j.dsp.2014.02.017.

YANG, Wei; YANG, Yuanhong; YANG, Mingwei. Fast digital envelope detector based

on generalized harmonic wavelet transform for BOTDR performance improvement.

Measurement Science and Technology, IOP Publishing, v. 25, n. 6, p. 065103, Apr.

2014. DOI: 10.1088/0957-0233/25/6/065103.

ZEILER, Matthew D. ADADELTA: An Adaptive Learning Rate Method, 22 Dec. 2012.

arXiv: 1212.5701 [cs.LG]. Available from: <https://arxiv.org/abs/1212.5701>.

https://doi.org/10.3847/1538-3881/ab1b47
https://doi.org/10.1145/3072959.3073692
https://doi.org/10.1109/spa.2015.7365137
https://doi.org/10.1109/acpr.2015.7486556
https://doi.org/https://doi.org/10.1016/j.dsp.2014.12.006
https://www.sciencedirect.com/science/article/pii/S1051200414003480
https://doi.org/10.1016/j.dsp.2014.02.017
https://doi.org/10.1088/0957-0233/25/6/065103
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701

ZHU, Zhi; MIYAUCHI, Ryota; ARAKI, Yukiko; UNOKI, Masashi. Contributions of

temporal cue on the perception of speaker individuality and vocal emotion for

noise-vocoded speech. Acoustical Science and Technology, Acoustical Society of

Japan, v. 39, n. 3, p. 234–242, May 2018. DOI: 10.1250/ast.39.234.

ZIELINSKI, Slawomir. On Some Biases Encountered in Modern Audio Quality

Listening Tests (Part 2): Selected Graphical Examples and Discussion. Journal of the

Audio Engineering Society, v. 64, n. 1, p. 55–74, Feb. 2016. ISSN 15494950. DOI:

10.17743/jaes.2015.0094. Available from:

<http://www.aes.org/e-lib/browse.cfm?elib=18105>. Visited on: 30 Mar. 2021.

ZIELINSKI, Slawomir; RUMSEY, Francis; BECH, Søren. On Some Biases Encountered

in Modern Audio Quality Listening Tests-A Review. Journal of the Audio

Engineering Society, v. 56, n. 6, p. 427–451, 2008. Available from:

<http://www.aes.org/e-lib/browse.cfm?elib=14393>.

ZILS, Aymeric; PACHET, François. Musical mosaicing. In: CITESEER.

PROCEEDINGS of the COST G-6 Conference on Digital Audio Effects (DAFX-01).

Limerick, Ireland: DAFX-01, 2001. v. 2, p. 135.

ZORDAN, Davide; MARTINEZ, Borja; VILAJOSANA, Ignasi; ROSSI, Michele. On the

Performance of Lossy Compression Schemes for Energy Constrained Sensor Networking.

ACM Transactions on Sensor Networks, v. 11, n. 1, p. 1–34, Nov. 2014. ISSN

1550-4859, 1550-4867. DOI: 10.1145/2629660. Available from:

<https://dl.acm.org/doi/10.1145/2629660>. Visited on: 3 Mar. 2021.

ZOU, Fangyu; SHEN, Li; JIE, Zequn; ZHANG, Weizhong; LIU, Wei. A Sufficient

Condition for Convergences of Adam and RMSProp. In: PROCEEDINGS of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Berlin:

CVPR, June 2019.

https://doi.org/10.1250/ast.39.234
https://doi.org/10.17743/jaes.2015.0094
http://www.aes.org/e-lib/browse.cfm?elib=18105
http://www.aes.org/e-lib/browse.cfm?elib=14393
https://doi.org/10.1145/2629660
https://dl.acm.org/doi/10.1145/2629660

	Resumo
	Palavras-chave
	Abstract
	Keywords
	List of figures
	List of tables
	List of acronyms
	List of algorithms
	Contents
	Introduction
	General Objective
	Specific Objectives
	Formulation of a neural-networks-friendly representation
	Formulation of an accurate envelope detection algorithm
	Formulation of a signal segmentation algorithm to divide a signal into its pseudo cycles

	Limitations
	Structure of this work

	Bibliographic review
	Musical instruments and digital computers
	Envelope detection
	The shape of a set of points in two dimensions

	Signal segmentation
	Artificial Intelligence and sound synthesis
	The MIDI specification

	Proposed Techniques
	Waves
	Relation between continuous and discrete waves
	A geometric approach to envelope estimation
	Formalizing the problem of envelope detection
	Simplified representation of a signal for envelope detection
	Mapping to the Cartesian coordinate system
	Discrete curvature estimation
	The Equivalent Circle Approach to discrete curvature estimation

	Identifying the envelope
	Theoretical guarantees
	Extensions
	Superior and inferior envelopes
	Simplified spectral representation
	Approximated location of pseudo cycles

	Segmenting quasi-periodic signals into pseudo cycles
	Deriving an envelope from the results of the segmentation algorithm
	Representing a signal as an evolving waveform
	Theoretical analysis of the segmentation algorithm

	The general algorithm
	The ecosystem
	Omnes Sonos: a real-time audio plugin application
	The neural networks
	Optimizer
	Loss function
	Number of parameters

	The trained instruments

	Results
	Quality of the envelope
	Reference envelope
	Comparison with traditional algorithms

	Quality of the segmentation
	Application to Lossy Audio Compression
	Comparison With Traditional Lossy Codecs
	Compression
	Timing
	Quality

	Quality of the plugin
	Analysis of the errors of the networks
	Comparison with available piano plugins

	Discussion
	Conclusion

	References

